Unraveling News: Reconciling Conflicting Evidence

Maria Bolboaca, Sarah Fischer
{"title":"Unraveling News: Reconciling Conflicting Evidence","authors":"Maria Bolboaca, Sarah Fischer","doi":"10.1515/BEJM-2019-0208","DOIUrl":null,"url":null,"abstract":"Abstract This paper addresses the lack of consensus in the empirical literature regarding the effects of technology diffusion news shocks. We attribute the conflicting evidence to the wide diversity in terms of variable settings, productivity series used, and identification schemes applied. We analyze the different identification schemes that have been employed in this literature. More specifically, we impose short- and medium-run restrictions to identify a news shock. The focus is on the medium-run identification maximizing at and over different horizons. We show that the identified news shock depends critically on the applied identification scheme and on the maximization horizon. We also investigate the importance of the information content of the model and of the productivity measure used. We find that models which either contain a large set of macroeconomic variables or include variables that are strongly forward looking deliver more robust results. Moreover, we show that the productivity series used may influence results, but there is convergence of findings for newer total factor productivity series vintages. Our conclusion is that news shocks have expansionary properties.","PeriodicalId":431854,"journal":{"name":"The B.E. Journal of Macroeconomics","volume":"8 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The B.E. Journal of Macroeconomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/BEJM-2019-0208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract This paper addresses the lack of consensus in the empirical literature regarding the effects of technology diffusion news shocks. We attribute the conflicting evidence to the wide diversity in terms of variable settings, productivity series used, and identification schemes applied. We analyze the different identification schemes that have been employed in this literature. More specifically, we impose short- and medium-run restrictions to identify a news shock. The focus is on the medium-run identification maximizing at and over different horizons. We show that the identified news shock depends critically on the applied identification scheme and on the maximization horizon. We also investigate the importance of the information content of the model and of the productivity measure used. We find that models which either contain a large set of macroeconomic variables or include variables that are strongly forward looking deliver more robust results. Moreover, we show that the productivity series used may influence results, but there is convergence of findings for newer total factor productivity series vintages. Our conclusion is that news shocks have expansionary properties.
揭露新闻:调和相互矛盾的证据
摘要本文针对技术扩散新闻冲击影响的实证文献缺乏共识的问题。我们将相互矛盾的证据归因于变量设置、使用的生产率系列和应用的识别方案方面的广泛多样性。我们分析了在本文献中采用的不同识别方案。更具体地说,我们施加短期和中期限制来识别新闻冲击。重点是在不同视界上最大化的中期识别。我们表明,已识别的新闻冲击主要取决于所应用的识别方案和最大化视界。我们还研究了模型的信息内容和所使用的生产率度量的重要性。我们发现,要么包含大量宏观经济变量的模型,要么包含具有强烈前瞻性的变量的模型,会提供更稳健的结果。此外,我们表明使用的生产率序列可能会影响结果,但对于较新的全要素生产率序列年份,发现存在收敛性。我们的结论是,新闻冲击具有扩张性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信