Automatic identification of vulnerable plaque based on flexible neural tree

Wei Tian, Yishen Pang, Sijie Niu, Haochen Yang, Jiwen Dong, Jin Zhou, Yuehui Chen
{"title":"Automatic identification of vulnerable plaque based on flexible neural tree","authors":"Wei Tian, Yishen Pang, Sijie Niu, Haochen Yang, Jiwen Dong, Jin Zhou, Yuehui Chen","doi":"10.1109/SPAC46244.2018.8965435","DOIUrl":null,"url":null,"abstract":"Identification of vulnerable plaque plays an important role in coronary heart disease diagnosis for clinicians. In this paper we propose a novel method based on flexible neural tree (FNT) to identify vulnerable plaques in intravascular optical coherence tomography (IVOCT) images. First, a flexible neural tree classifier is constructed by selecting features of the image. Then, the probabilistic incremental program evolution (PIPE) algorithm optimizes the flexible neural tree structure and uses particle swarm optimization (PSO) to optimize the parameters. Experimental results show that this method can effectively identify vulnerable plaques in IVOCT images.","PeriodicalId":360369,"journal":{"name":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC46244.2018.8965435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Identification of vulnerable plaque plays an important role in coronary heart disease diagnosis for clinicians. In this paper we propose a novel method based on flexible neural tree (FNT) to identify vulnerable plaques in intravascular optical coherence tomography (IVOCT) images. First, a flexible neural tree classifier is constructed by selecting features of the image. Then, the probabilistic incremental program evolution (PIPE) algorithm optimizes the flexible neural tree structure and uses particle swarm optimization (PSO) to optimize the parameters. Experimental results show that this method can effectively identify vulnerable plaques in IVOCT images.
基于柔性神经树的易损斑块自动识别
易损斑块的鉴定对临床医生诊断冠心病具有重要意义。本文提出了一种基于柔性神经树(FNT)的血管内光学相干断层扫描(IVOCT)图像易损斑块识别方法。首先,通过选择图像的特征,构造一个灵活的神经树分类器;然后,采用概率增量程序进化算法(PIPE)对柔性神经树结构进行优化,并采用粒子群算法(PSO)对参数进行优化。实验结果表明,该方法可以有效地识别出IVOCT图像中的易损斑块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信