{"title":"Static detection of malicious JavaScript-bearing PDF documents","authors":"P. Laskov, Nedim Srndic","doi":"10.1145/2076732.2076785","DOIUrl":null,"url":null,"abstract":"Despite the recent security improvements in Adobe's PDF viewer, its underlying code base remains vulnerable to novel exploits. A steady flow of rapidly evolving PDF malware observed in the wild substantiates the need for novel protection instruments beyond the classical signature-based scanners. In this contribution we present a technique for detection of JavaScript-bearing malicious PDF documents based on static analysis of extracted JavaScript code. Compared to previous work, mostly based on dynamic analysis, our method incurs an order of magnitude lower run-time overhead and does not require special instrumentation. Due to its efficiency we were able to evaluate it on an extremely large real-life dataset obtained from the VirusTotal malware upload portal. Our method has proved to be effective against both known and unknown malware and suitable for large-scale batch processing.","PeriodicalId":397003,"journal":{"name":"Asia-Pacific Computer Systems Architecture Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"179","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Computer Systems Architecture Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2076732.2076785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 179
Abstract
Despite the recent security improvements in Adobe's PDF viewer, its underlying code base remains vulnerable to novel exploits. A steady flow of rapidly evolving PDF malware observed in the wild substantiates the need for novel protection instruments beyond the classical signature-based scanners. In this contribution we present a technique for detection of JavaScript-bearing malicious PDF documents based on static analysis of extracted JavaScript code. Compared to previous work, mostly based on dynamic analysis, our method incurs an order of magnitude lower run-time overhead and does not require special instrumentation. Due to its efficiency we were able to evaluate it on an extremely large real-life dataset obtained from the VirusTotal malware upload portal. Our method has proved to be effective against both known and unknown malware and suitable for large-scale batch processing.