{"title":"Analysis of ripple current of an electrolytic capacitor in power factor controller","authors":"T. Kurachi, M. Shoyama, T. Ninomiya","doi":"10.1109/PEDS.1995.404949","DOIUrl":null,"url":null,"abstract":"A large electrolytic capacitor is usually used at the output terminal of power factor control circuits to suppress the high-frequency switching ripple voltage as well as the low-frequency ripple voltage. Due to the equivalent series resistance of the electrolytic capacitor, the capacitor current causes a power loss which increases its temperature and may shorten its life time. It is important therefore to estimate the effective value of the capacitor current accurately. This paper presents a detailed analysis of the ripple current of an electrolytic capacitor in a boost-type power factor control circuit. The ripple current is divided into two components, namely the low-frequency and the high-frequency components. The root-mean-square value of the capacitor current is derived for both components. The analytical results are confirmed by experiments.<<ETX>>","PeriodicalId":244042,"journal":{"name":"Proceedings of 1995 International Conference on Power Electronics and Drive Systems. PEDS 95","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1995 International Conference on Power Electronics and Drive Systems. PEDS 95","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PEDS.1995.404949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24
Abstract
A large electrolytic capacitor is usually used at the output terminal of power factor control circuits to suppress the high-frequency switching ripple voltage as well as the low-frequency ripple voltage. Due to the equivalent series resistance of the electrolytic capacitor, the capacitor current causes a power loss which increases its temperature and may shorten its life time. It is important therefore to estimate the effective value of the capacitor current accurately. This paper presents a detailed analysis of the ripple current of an electrolytic capacitor in a boost-type power factor control circuit. The ripple current is divided into two components, namely the low-frequency and the high-frequency components. The root-mean-square value of the capacitor current is derived for both components. The analytical results are confirmed by experiments.<>