Long Short-Term Memory for Human Fall Detection Based Gamification on Unconstraint Smartphone Position

M. S. Astriani, Y. Heryadi, Gede Putra Kusuma, E. Abdurachman
{"title":"Long Short-Term Memory for Human Fall Detection Based Gamification on Unconstraint Smartphone Position","authors":"M. S. Astriani, Y. Heryadi, Gede Putra Kusuma, E. Abdurachman","doi":"10.1109/AIT49014.2019.9144759","DOIUrl":null,"url":null,"abstract":"Fall incident can caused health problem in elderly and people with special treatments. Fall detection method is needed to minimized the problem when human fallen and smartphone can be used as the device to detect it. Usually people carry smartphone in any positions and can make fall detection method difficult to detect when fall occurs. Long Short-Term Memory (LSTM) combined with Sigmoid helps to answer the challenge to handle smartphone accelerometer and gyroscope data in many smartphone orientation position. LSTM method on this experiment can achieved 91.67% for the accuracy result. Since the fall data occurs rarely and there may be insufficient data available, the gamification prospect implemented in fall detection application especially on “Bug” bounty can help researcher to enhance the accuracy result to make a better human fall detection method.","PeriodicalId":359410,"journal":{"name":"2019 International Congress on Applied Information Technology (AIT)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Congress on Applied Information Technology (AIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIT49014.2019.9144759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Fall incident can caused health problem in elderly and people with special treatments. Fall detection method is needed to minimized the problem when human fallen and smartphone can be used as the device to detect it. Usually people carry smartphone in any positions and can make fall detection method difficult to detect when fall occurs. Long Short-Term Memory (LSTM) combined with Sigmoid helps to answer the challenge to handle smartphone accelerometer and gyroscope data in many smartphone orientation position. LSTM method on this experiment can achieved 91.67% for the accuracy result. Since the fall data occurs rarely and there may be insufficient data available, the gamification prospect implemented in fall detection application especially on “Bug” bounty can help researcher to enhance the accuracy result to make a better human fall detection method.
基于无约束智能手机位置游戏化的人体跌倒检测长短期记忆
跌倒事故可引起老年人和特殊治疗人群的健康问题。为了最大限度地减少人类跌倒时的问题,需要摔倒检测方法,智能手机可以作为检测设备。通常人们将智能手机放在任何位置,这使得跌倒检测方法在发生跌倒时难以检测到。长短期记忆(LSTM)与Sigmoid相结合,有助于解决在许多智能手机方向位置处理智能手机加速度计和陀螺仪数据的挑战。LSTM方法在本实验上的准确率达到了91.67%。由于跌倒数据很少发生,可用数据可能不足,因此在跌倒检测应用中实现游戏化前景,特别是在“Bug”赏金方面,可以帮助研究人员提高结果的准确性,从而更好地进行人体跌倒检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信