Cauchy-Schwarz divergence-based distributed fusion with poisson random finite sets

A. Gostar, R. Hoseinnezhad, A. Bab-Hadiashar
{"title":"Cauchy-Schwarz divergence-based distributed fusion with poisson random finite sets","authors":"A. Gostar, R. Hoseinnezhad, A. Bab-Hadiashar","doi":"10.1109/ICCAIS.2017.8217559","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach towards statistical fusion of multi-source information. Our solution is formulated in the context of fusing the Poisson finite random set posteriors returned by multiple local PHD filters at sensor nodes of a distributed multi-sensor multi-object estimation system. The most common measure used for information gain in stochastic multi-source information fusion is Kullback-Leibler divergence (KLD) which leads to the well-known Generalised Covariance Intersection (GCI) rule for sensor fusion. We present the idea of using Cauchy-Schwarz divergence instead of KLD and derive a closed-form solution for fusion of multiple Poisson posteriors. Simulation results show that our method performs favourably against GCI fusion rule in terms of overall tracking performance.","PeriodicalId":410094,"journal":{"name":"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2017.8217559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

This paper presents a new approach towards statistical fusion of multi-source information. Our solution is formulated in the context of fusing the Poisson finite random set posteriors returned by multiple local PHD filters at sensor nodes of a distributed multi-sensor multi-object estimation system. The most common measure used for information gain in stochastic multi-source information fusion is Kullback-Leibler divergence (KLD) which leads to the well-known Generalised Covariance Intersection (GCI) rule for sensor fusion. We present the idea of using Cauchy-Schwarz divergence instead of KLD and derive a closed-form solution for fusion of multiple Poisson posteriors. Simulation results show that our method performs favourably against GCI fusion rule in terms of overall tracking performance.
基于Cauchy-Schwarz散度的泊松随机有限集分布融合
提出了一种多源信息统计融合的新方法。我们的解决方案是在融合分布式多传感器多目标估计系统的传感器节点上多个局部PHD滤波器返回的泊松有限随机集后验的背景下制定的。随机多源信息融合中最常用的信息增益度量是Kullback-Leibler散度(KLD),它导致了众所周知的传感器融合广义协方差相交(GCI)规则。我们提出了用Cauchy-Schwarz散度代替KLD的思想,并推导了多个泊松后验融合的封闭解。仿真结果表明,该方法在总体跟踪性能上优于GCI融合规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信