Avinash Ranganath, Avishek Biswas, Ioannis Karamouzas, V. Zordan
{"title":"Motor Babble: Morphology-Driven Coordinated Control of Articulated Characters","authors":"Avinash Ranganath, Avishek Biswas, Ioannis Karamouzas, V. Zordan","doi":"10.1145/3487983.3488291","DOIUrl":null,"url":null,"abstract":"Locomotion in humans and animals is highly coordinated, with many joints moving together. Learning similar coordinated locomotion in articulated virtual characters, in the absence of reference motion data, is a challenging task due to the high number of degrees of freedom and the redundancy that comes with it. In this paper, we present a method for learning locomotion for virtual characters in a low dimensional latent space which defines how different joints move together. We introduce a technique called motor babble, wherein a character interacts with its environment by actuating its joints through uncoordinated, low-level (motor) excitations, resulting in a corpus of motion data from which a manifold latent space is extracted. Dimensions of the extracted manifold define a wide variety of synergies pertaining to the character and, through reinforcement learning, we train the character to learn locomotion in the latent space by selecting a small set of appropriate latent dimensions, along with learning the corresponding policy.","PeriodicalId":170509,"journal":{"name":"Proceedings of the 14th ACM SIGGRAPH Conference on Motion, Interaction and Games","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th ACM SIGGRAPH Conference on Motion, Interaction and Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3487983.3488291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Locomotion in humans and animals is highly coordinated, with many joints moving together. Learning similar coordinated locomotion in articulated virtual characters, in the absence of reference motion data, is a challenging task due to the high number of degrees of freedom and the redundancy that comes with it. In this paper, we present a method for learning locomotion for virtual characters in a low dimensional latent space which defines how different joints move together. We introduce a technique called motor babble, wherein a character interacts with its environment by actuating its joints through uncoordinated, low-level (motor) excitations, resulting in a corpus of motion data from which a manifold latent space is extracted. Dimensions of the extracted manifold define a wide variety of synergies pertaining to the character and, through reinforcement learning, we train the character to learn locomotion in the latent space by selecting a small set of appropriate latent dimensions, along with learning the corresponding policy.