Michel Gangnet, J. Hervé, T. Pudet, Jean-Manuel Van Thong
{"title":"Incremental computation of planar maps","authors":"Michel Gangnet, J. Hervé, T. Pudet, Jean-Manuel Van Thong","doi":"10.1145/74333.74369","DOIUrl":null,"url":null,"abstract":"A planar map is a figure formed by a set of intersecting lines and curves. Such an object captures both the geometrical and the topological information implicitly defined by the data. In the context of 2D drawing it provides a new interaction paradigm, map sketching, for editing graphic shapes.To build a planar map, one must compute curve intersections and deduce from them the map they define. The computed topology must be consistent with the underlying geometry. Robustness of geometric computations is a key issue in this process. We present a robust solution to Bézier curve intersection that uses exact forward differencing and bounded rational arithmetic. Then, we describe data structure and algorithms to support incremental insertion of Bézier curves in a planar map. A prototype illustration tool using this method is also discussed.","PeriodicalId":422743,"journal":{"name":"Proceedings of the 16th annual conference on Computer graphics and interactive techniques","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"98","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/74333.74369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98
Abstract
A planar map is a figure formed by a set of intersecting lines and curves. Such an object captures both the geometrical and the topological information implicitly defined by the data. In the context of 2D drawing it provides a new interaction paradigm, map sketching, for editing graphic shapes.To build a planar map, one must compute curve intersections and deduce from them the map they define. The computed topology must be consistent with the underlying geometry. Robustness of geometric computations is a key issue in this process. We present a robust solution to Bézier curve intersection that uses exact forward differencing and bounded rational arithmetic. Then, we describe data structure and algorithms to support incremental insertion of Bézier curves in a planar map. A prototype illustration tool using this method is also discussed.