{"title":"Image based skin disease detection using hybrid neural network coupled bag-of-features","authors":"Shouvik Chakraborty, Kalyani Mali, Sankhadeep Chatterjee, Sumit Anand, Aavery Basu, Soumen Banerjee, Mitali Das, Abhishek Bhattacharya","doi":"10.1109/UEMCON.2017.8249038","DOIUrl":null,"url":null,"abstract":"The current work proposes a neural based detection method of two different skin diseases using skin imaging. Skin images of two diseases namely Basel Cell Carcinoma and Skin Angioma are utilized. SIFT feature extractor has been employed followed by a clustering phase on feature space in order to reduce the number of features suitable for neural based models. The extracted bag-of-features modified dataset is used to train metaheuristic supported hybrid Artificial Neural Networks to classify the skin images in order to detect the diseases under study. A well-known multi objective optimization technique called Non-dominated Sorting Genetic Algorithm — II is used to train the ANN (NN-NSGA-II). The proposed model is further compared with two other well-known metaheuristic based classifier namely NN-PSO (ANN trained with PSO) and NN-CS (ANN trained with Cuckoo Search) in terms of testing phase confusion matrix based performance measuring metrics such as accuracy, precision, recall and F-measure. Experimental results indicated towards the superiority of the proposed bag-of-features enabled NN-NSGA-II model.","PeriodicalId":403890,"journal":{"name":"2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UEMCON.2017.8249038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
The current work proposes a neural based detection method of two different skin diseases using skin imaging. Skin images of two diseases namely Basel Cell Carcinoma and Skin Angioma are utilized. SIFT feature extractor has been employed followed by a clustering phase on feature space in order to reduce the number of features suitable for neural based models. The extracted bag-of-features modified dataset is used to train metaheuristic supported hybrid Artificial Neural Networks to classify the skin images in order to detect the diseases under study. A well-known multi objective optimization technique called Non-dominated Sorting Genetic Algorithm — II is used to train the ANN (NN-NSGA-II). The proposed model is further compared with two other well-known metaheuristic based classifier namely NN-PSO (ANN trained with PSO) and NN-CS (ANN trained with Cuckoo Search) in terms of testing phase confusion matrix based performance measuring metrics such as accuracy, precision, recall and F-measure. Experimental results indicated towards the superiority of the proposed bag-of-features enabled NN-NSGA-II model.