{"title":"An Approach to the Transformer Faults Diagnosing Based on Rough Set and Artificial Immune System","authors":"Shaomin Song, Yaonan Wang, Shengxin Yao, Min Wang","doi":"10.1109/CCPR.2008.94","DOIUrl":null,"url":null,"abstract":"Aiming at the shortages of the diagnosing efficiency, applicability and knowledge acquisition ability in traditional transformer fault diagnosing methods, an immune model for diagnosing transformer fault is established in this paper by combining the strong ability of recognition and learning in the artificial immune system (AIS) with the attributes' objectively reduction of the rough set theory (RST) together. The optimal coding of the antibodies and the antigents based on RST, the algorithm in the immune model for diagnosing and learning is analyzed in detail. Finally, the experimental results confirmed that this model has high diagnosis accuracy, strong robustness and good learning ability.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"226 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Aiming at the shortages of the diagnosing efficiency, applicability and knowledge acquisition ability in traditional transformer fault diagnosing methods, an immune model for diagnosing transformer fault is established in this paper by combining the strong ability of recognition and learning in the artificial immune system (AIS) with the attributes' objectively reduction of the rough set theory (RST) together. The optimal coding of the antibodies and the antigents based on RST, the algorithm in the immune model for diagnosing and learning is analyzed in detail. Finally, the experimental results confirmed that this model has high diagnosis accuracy, strong robustness and good learning ability.