Combined Coverage, Attention and Pointer Networks for Improving Slot Filling in Spoken Language Understanding

Yaping Wang, Huiqin Shao, Zhen Li, Yan Zhu, Zhe Liu
{"title":"Combined Coverage, Attention and Pointer Networks for Improving Slot Filling in Spoken Language Understanding","authors":"Yaping Wang, Huiqin Shao, Zhen Li, Yan Zhu, Zhe Liu","doi":"10.1109/IC-NIDC54101.2021.9660465","DOIUrl":null,"url":null,"abstract":"Sequence to sequence (Seq2Seq) model together with pointer network (Ptr-Net) has recently show promising results in slot filling task, in the situation where only sentence-level annotations are available, while the model's prediction contains repetition of slot values. In this paper, we add a coverage mechanism to alleviate issues of repeating prediction in slot filling task. We use a coverage vector to record attention history, and then add to the computation of attention, which can force model to consider more about un-predicted slot values. Experiments show that the proposed model significantly improves slot value prediction F1 with 8.5% relative improvement compare to the baseline models on benchmark DSTC2 (Dialog State Tracking Challenge 2) datasets.","PeriodicalId":264468,"journal":{"name":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-NIDC54101.2021.9660465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sequence to sequence (Seq2Seq) model together with pointer network (Ptr-Net) has recently show promising results in slot filling task, in the situation where only sentence-level annotations are available, while the model's prediction contains repetition of slot values. In this paper, we add a coverage mechanism to alleviate issues of repeating prediction in slot filling task. We use a coverage vector to record attention history, and then add to the computation of attention, which can force model to consider more about un-predicted slot values. Experiments show that the proposed model significantly improves slot value prediction F1 with 8.5% relative improvement compare to the baseline models on benchmark DSTC2 (Dialog State Tracking Challenge 2) datasets.
综合覆盖、注意和指针网络提高口语理解槽填充
序列到序列(Seq2Seq)模型和指针网络(Ptr-Net)最近在只有句子级注释可用的情况下,在槽填充任务中显示出有希望的结果,而模型的预测包含槽值的重复。在本文中,我们增加了一种覆盖机制来缓解补槽任务中重复预测的问题。我们使用覆盖向量来记录注意力历史,然后添加到注意力的计算中,这可以迫使模型更多地考虑不可预测的槽值。实验表明,与基准DSTC2(对话状态跟踪挑战2)数据集上的基线模型相比,该模型显著提高了槽值预测F1,相对提高了8.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信