Offsetting and blending with perturbation functions

S. Vyatkin, O. Romanyuk, S. Pavlov, P. Popiel, Arman Abenov, Kalamkas Begaliyeva
{"title":"Offsetting and blending with perturbation functions","authors":"S. Vyatkin, O. Romanyuk, S. Pavlov, P. Popiel, Arman Abenov, Kalamkas Begaliyeva","doi":"10.1117/12.2522353","DOIUrl":null,"url":null,"abstract":"Free forms synthesized by means of the perturbation functions are proposed. the problem of mapping a two-dimensional texture array to curved surfaces defined by perturbation functions is considered. surface patterns are created by interactions between texture and surface. the synthesis a 2d and 3d texture array onto curvilinear surfaces is solved. For shape creating, we propose a set of algorithms and software based on function-defined surfaces that perform an interactive rate and enable intuitive operations.","PeriodicalId":299297,"journal":{"name":"Optical Fibers and Their Applications","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Fibers and Their Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2522353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Free forms synthesized by means of the perturbation functions are proposed. the problem of mapping a two-dimensional texture array to curved surfaces defined by perturbation functions is considered. surface patterns are created by interactions between texture and surface. the synthesis a 2d and 3d texture array onto curvilinear surfaces is solved. For shape creating, we propose a set of algorithms and software based on function-defined surfaces that perform an interactive rate and enable intuitive operations.
与扰动函数的偏移和混合
提出了用摄动函数合成的自由形式。研究了二维纹理阵列到由微扰函数定义的曲面的映射问题。表面图案是由纹理和表面之间的相互作用产生的。解决了曲面上二维和三维纹理阵列的合成问题。对于形状创建,我们提出了一套基于函数定义曲面的算法和软件,执行交互速率并实现直观操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信