An Empirical Study of Emotion Recognition from Thermal Video Based on Deep Neural Networks

Herman Prawiro, Tse-Yu Pan, Min-Chun Hu
{"title":"An Empirical Study of Emotion Recognition from Thermal Video Based on Deep Neural Networks","authors":"Herman Prawiro, Tse-Yu Pan, Min-Chun Hu","doi":"10.1109/VCIP49819.2020.9301883","DOIUrl":null,"url":null,"abstract":"Emotion recognition is a crucial problem in affective computing. Most of previous works utilized facial expression from visible spectrum data to solve emotion recognition task. Thermal videos provide temperature measurement of human body over time, which can be used to recognize affective states by learning its temporal pattern. In this paper, we conduct comparative experiments to study the effectiveness of the existing deep neural networks when applied to emotion recognition task from thermal video. We analyze the effect of various approaches for frame sampling in video, temporal aggregation between frames, and different convolutional neural network architectures. To the best of our knowledge, we are the first w ork t o c onduct s tudy on emotion recognition from thermal video based on deep neural networks. Our work can provide preliminary study to design new methods for emotion recognition in thermal domain.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Emotion recognition is a crucial problem in affective computing. Most of previous works utilized facial expression from visible spectrum data to solve emotion recognition task. Thermal videos provide temperature measurement of human body over time, which can be used to recognize affective states by learning its temporal pattern. In this paper, we conduct comparative experiments to study the effectiveness of the existing deep neural networks when applied to emotion recognition task from thermal video. We analyze the effect of various approaches for frame sampling in video, temporal aggregation between frames, and different convolutional neural network architectures. To the best of our knowledge, we are the first w ork t o c onduct s tudy on emotion recognition from thermal video based on deep neural networks. Our work can provide preliminary study to design new methods for emotion recognition in thermal domain.
基于深度神经网络的热视频情绪识别实证研究
情感识别是情感计算中的一个关键问题。以往的工作大多是利用可见光谱数据中的面部表情来解决情绪识别任务。热视频提供了人体随时间的温度测量,可以通过学习其时间模式来识别情感状态。本文通过对比实验,研究了现有深度神经网络在热视频情感识别任务中的有效性。我们分析了视频中不同的帧采样方法、帧之间的时间聚合以及不同的卷积神经网络架构的效果。据我们所知,我们是第一个进行基于深度神经网络的热视频情绪识别研究的工作。本研究可为热域情感识别新方法的设计提供初步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信