G. Carvalho, N. Medeiros, H. Madeira, Bruno Cabral
{"title":"A Functional FMECA Approach for the Assessment of Critical Infrastructure Resilience","authors":"G. Carvalho, N. Medeiros, H. Madeira, Bruno Cabral","doi":"10.1109/QRS57517.2022.00073","DOIUrl":null,"url":null,"abstract":"The damage or destruction of Critical Infrastructures (CIs) affect societies’ sustainable functioning. Therefore, it is crucial to have effective methods to assess the risk and resilience of CIs. Failure Mode and Effects Analysis (FMEA) and Failure Mode Effects and Criticality Analysis (FMECA) are two approaches to risk assessment and criticality analysis. However, these approaches are complex to apply to intricate CIs and associated Cyber-Physical Systems (CPS). We provide a top-down strategy, starting from a high abstraction level of the system and progressing to cover the functional elements of the infrastructures. This approach develops from FMECA but estimates risks and focuses on assessing resilience. We applied the proposed technique to a real-world CI, predicting how possible improvement scenarios may influence the overall system resilience. The results show the effectiveness of our approach in benchmarking the CI resilience, providing a cost-effective way to evaluate plausible alternatives concerning the improvement of preventive measures.","PeriodicalId":143812,"journal":{"name":"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS57517.2022.00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The damage or destruction of Critical Infrastructures (CIs) affect societies’ sustainable functioning. Therefore, it is crucial to have effective methods to assess the risk and resilience of CIs. Failure Mode and Effects Analysis (FMEA) and Failure Mode Effects and Criticality Analysis (FMECA) are two approaches to risk assessment and criticality analysis. However, these approaches are complex to apply to intricate CIs and associated Cyber-Physical Systems (CPS). We provide a top-down strategy, starting from a high abstraction level of the system and progressing to cover the functional elements of the infrastructures. This approach develops from FMECA but estimates risks and focuses on assessing resilience. We applied the proposed technique to a real-world CI, predicting how possible improvement scenarios may influence the overall system resilience. The results show the effectiveness of our approach in benchmarking the CI resilience, providing a cost-effective way to evaluate plausible alternatives concerning the improvement of preventive measures.