Complex diffusion Monte-Carlo method: test by the simulation of the 2D fermions

B. Abdullaev, M. Musakhanov, A. Nakamura
{"title":"Complex diffusion Monte-Carlo method: test by the simulation of the 2D fermions","authors":"B. Abdullaev, M. Musakhanov, A. Nakamura","doi":"10.56017/2181-1318.1122","DOIUrl":null,"url":null,"abstract":"On the base of the diffusion Monte-Carlo method we develop the method allowing to simulate the quantum systems with complex wave function. The method is exact and there are no approximations on the simulations of the module and the phase of the system's wave function. In our method averaged value of any quantity have no direct contribution from the phase of distribution function but only from the phase of the Green function of diffusion equation. We test the method by the simulations of the ground state of fermions in two-dimensional parabolic well. Anyons are used for the representation of the two-dimensional (2D) fermions. We vary the number of fermions from two to ten and find a good agreement of the numerical results with analytical ones for the numbers of the particles N > 4.","PeriodicalId":127023,"journal":{"name":"Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56017/2181-1318.1122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

On the base of the diffusion Monte-Carlo method we develop the method allowing to simulate the quantum systems with complex wave function. The method is exact and there are no approximations on the simulations of the module and the phase of the system's wave function. In our method averaged value of any quantity have no direct contribution from the phase of distribution function but only from the phase of the Green function of diffusion equation. We test the method by the simulations of the ground state of fermions in two-dimensional parabolic well. Anyons are used for the representation of the two-dimensional (2D) fermions. We vary the number of fermions from two to ten and find a good agreement of the numerical results with analytical ones for the numbers of the particles N > 4.
复扩散蒙特卡罗方法:二维费米子的模拟检验
在扩散蒙特卡罗方法的基础上,提出了一种可以模拟具有复杂波函数的量子系统的方法。该方法是精确的,对系统波函数的模态和相位的模拟没有近似。在我们的方法中,任何量的平均值都不直接来自分布函数的相位,而只来自扩散方程的格林函数的相位。我们通过模拟二维抛物阱中费米子的基态来验证该方法。任意子被用来表示二维费米子。我们将费米子的数目从2个改变到10个,并发现粒子N > 4的数值结果与解析结果很一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信