Multiscale method based on spline regression for comparing multiple nonparametric curves

Na Li, Xuhua Liu
{"title":"Multiscale method based on spline regression for comparing multiple nonparametric curves","authors":"Na Li, Xuhua Liu","doi":"10.1109/FSKD.2017.8393375","DOIUrl":null,"url":null,"abstract":"SiZer (SIgnificant ZERo crossing of the derivatives) is a powerful scale-space visualization technique for exploratory data analysis. In this paper a new version of SiZer based on regression spline is proposed for comparing multiple regression curves. The new SiZer is constructed on the basis of p-values for testing the equality of multiple regression functions at different locations and scales. Fiducial inference and regression spline are applied to gain the p-values. In addition, multiple testing adjustments are carried out to control the row-wise false discovery rate and family-wise error rate of the proposed SiZer, respectively. The new SiZer is more powerful even in the case of small sample size case due to the good properties of p-value and FDR control. Simulation results show that the new SiZer performs well compared with the existing SiZers. Finally, a real data example is carried out to illustrate its usage in applications.","PeriodicalId":236093,"journal":{"name":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2017.8393375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

SiZer (SIgnificant ZERo crossing of the derivatives) is a powerful scale-space visualization technique for exploratory data analysis. In this paper a new version of SiZer based on regression spline is proposed for comparing multiple regression curves. The new SiZer is constructed on the basis of p-values for testing the equality of multiple regression functions at different locations and scales. Fiducial inference and regression spline are applied to gain the p-values. In addition, multiple testing adjustments are carried out to control the row-wise false discovery rate and family-wise error rate of the proposed SiZer, respectively. The new SiZer is more powerful even in the case of small sample size case due to the good properties of p-value and FDR control. Simulation results show that the new SiZer performs well compared with the existing SiZers. Finally, a real data example is carried out to illustrate its usage in applications.
基于样条回归的多尺度非参数曲线比较方法
SiZer(导数的显著零交叉)是一种用于探索性数据分析的强大的尺度空间可视化技术。本文提出了一个基于回归样条的新版本的SiZer,用于比较多个回归曲线。新的SiZer是在p值的基础上构建的,用于检验多个回归函数在不同位置和尺度上的相等性。采用基准推理和回归样条法获得p值。此外,还进行了多次测试调整,分别控制了所提出的SiZer的逐行错误发现率和逐族错误率。由于p值和FDR控制的良好特性,新的SiZer即使在小样本量的情况下也更强大。仿真结果表明,与现有的分级器相比,新分级器性能良好。最后,通过一个实际的数据实例说明了该方法在应用中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信