{"title":"A fast algorithm for finding k-nearest neighbors with non-metric dissimilarity","authors":"Bin Zhang, S. Srihari","doi":"10.1109/IWFHR.2002.1030877","DOIUrl":null,"url":null,"abstract":"Fast nearest neighbor (NN) finding has been extensively studied. While some fast NN algorithms using metrics rely on the essential properties of metric spaces, the others using non-metric measures fail for large-size templates. However in some applications with very large size templates, the best performance is achieved by NN methods based on the dissimilarity measures resulting in a special space where computations cannot be pruned by the algorithms based-on the triangular inequality. For such NN methods, the existing fast algorithms except condensing algorithms are not applicable. In this paper, a fast hierarchical search algorithm is proposed to find k-NNs using a non-metric measure in a binary feature space. Experiments with handwritten digit recognition show that the new algorithm reduces on average dissimilarity computations by more than 90% while losing the accuracy by less than 0.1%, with a 10% increase in memory.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Fast nearest neighbor (NN) finding has been extensively studied. While some fast NN algorithms using metrics rely on the essential properties of metric spaces, the others using non-metric measures fail for large-size templates. However in some applications with very large size templates, the best performance is achieved by NN methods based on the dissimilarity measures resulting in a special space where computations cannot be pruned by the algorithms based-on the triangular inequality. For such NN methods, the existing fast algorithms except condensing algorithms are not applicable. In this paper, a fast hierarchical search algorithm is proposed to find k-NNs using a non-metric measure in a binary feature space. Experiments with handwritten digit recognition show that the new algorithm reduces on average dissimilarity computations by more than 90% while losing the accuracy by less than 0.1%, with a 10% increase in memory.