Speckle noise reduction from ultrasound images using principal component analysis with bit plane slicing and nonlinear diffusion method

Mohammad Motiur Rahman, P. K. M. Kumar, Md. Gauhar Arefin, Mohammad Shorif Uddin
{"title":"Speckle noise reduction from ultrasound images using principal component analysis with bit plane slicing and nonlinear diffusion method","authors":"Mohammad Motiur Rahman, P. K. M. Kumar, Md. Gauhar Arefin, Mohammad Shorif Uddin","doi":"10.1109/ICCITECHN.2012.6509760","DOIUrl":null,"url":null,"abstract":"In this paper we present and evaluate a novel method for an efficient speckle denoising by using principal component analysis (PCA) with bit plane slicing and nonlinear diffusion. We use PCA transformation for generating de-correlated dataset from a noisy image. Then we apply bit plane slicing on the de-correlated dataset and nonlinear diffusion is applied on each bit plane. For nonlinear diffusion in each bit plane level, a gradient threshold is automatically estimated. Add up all bit plane slice after nonlinear diffusion execution and then we implement inverse principal component analysis for making denoised images. The proposed speckle reduction method could improve image quality and the visibility of small structures and fine details in medical ultrasound imaging compared with state-of-the-art speckle denoising algorithms.","PeriodicalId":127060,"journal":{"name":"2012 15th International Conference on Computer and Information Technology (ICCIT)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 15th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2012.6509760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we present and evaluate a novel method for an efficient speckle denoising by using principal component analysis (PCA) with bit plane slicing and nonlinear diffusion. We use PCA transformation for generating de-correlated dataset from a noisy image. Then we apply bit plane slicing on the de-correlated dataset and nonlinear diffusion is applied on each bit plane. For nonlinear diffusion in each bit plane level, a gradient threshold is automatically estimated. Add up all bit plane slice after nonlinear diffusion execution and then we implement inverse principal component analysis for making denoised images. The proposed speckle reduction method could improve image quality and the visibility of small structures and fine details in medical ultrasound imaging compared with state-of-the-art speckle denoising algorithms.
基于位平面切片和非线性扩散的超声图像散斑降噪方法
本文提出并评价了一种基于位平面切片和非线性扩散的主成分分析(PCA)的高效散斑去噪方法。我们使用PCA变换从噪声图像生成去相关数据集。然后对去相关数据集进行位平面切片,并在每个位平面上进行非线性扩散。对于每个位平面的非线性扩散,自动估计梯度阈值。将非线性扩散后的所有位平面切片相加,然后进行逆主成分分析,得到去噪图像。与现有的散斑去噪算法相比,所提出的散斑去噪方法可以提高图像质量,提高医学超声成像中小结构和精细细节的可见性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信