{"title":"Domain Adaptation via Teacher-Student Learning for End-to-End Speech Recognition","authors":"Zhong Meng, Jinyu Li, Yashesh Gaur, Y. Gong","doi":"10.1109/ASRU46091.2019.9003776","DOIUrl":null,"url":null,"abstract":"Teacher-student (T/S) has shown to be effective for domain adaptation of deep neural network acoustic models in hybrid speech recognition systems. In this work, we extend the T/S learning to large-scale unsupervised domain adaptation of an attention-based end-to-end (E2E) model through two levels of knowledge transfer: teacher's token posteriors as soft labels and one-best predictions as decoder guidance. To further improve T/S learning with the help of ground-truth labels, we propose adaptive T/S (AT/S) learning. Instead of conditionally choosing from either the teacher's soft token posteriors or the one-hot ground-truth label, in AT/S, the student always learns from both the teacher and the ground truth with a pair of adaptive weights assigned to the soft and one-hot labels quantifying the confidence on each of the knowledge sources. The confidence scores are dynamically estimated at each decoder step as a function of the soft and one-hot labels. With 3400 hours parallel close-talk and far-field Microsoft Cortana data for domain adaptation, T/S and AT/S achieves 6.3% and 10.3% relative word error rate improvement over a strong E2E model trained with the same amount of far-field data.","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"41","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9003776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 41
Abstract
Teacher-student (T/S) has shown to be effective for domain adaptation of deep neural network acoustic models in hybrid speech recognition systems. In this work, we extend the T/S learning to large-scale unsupervised domain adaptation of an attention-based end-to-end (E2E) model through two levels of knowledge transfer: teacher's token posteriors as soft labels and one-best predictions as decoder guidance. To further improve T/S learning with the help of ground-truth labels, we propose adaptive T/S (AT/S) learning. Instead of conditionally choosing from either the teacher's soft token posteriors or the one-hot ground-truth label, in AT/S, the student always learns from both the teacher and the ground truth with a pair of adaptive weights assigned to the soft and one-hot labels quantifying the confidence on each of the knowledge sources. The confidence scores are dynamically estimated at each decoder step as a function of the soft and one-hot labels. With 3400 hours parallel close-talk and far-field Microsoft Cortana data for domain adaptation, T/S and AT/S achieves 6.3% and 10.3% relative word error rate improvement over a strong E2E model trained with the same amount of far-field data.