Sentiment-Specific Representation Learning for Document-Level Sentiment Analysis

Duyu Tang
{"title":"Sentiment-Specific Representation Learning for Document-Level Sentiment Analysis","authors":"Duyu Tang","doi":"10.1145/2684822.2697035","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a representation learning research framework for document-level sentiment analysis. Given a document as the input, document-level sentiment analysis aims to automatically classify its sentiment/opinion (such as thumbs up or thumbs down) based on the textural information. Despite the success of feature engineering in many previous studies, the hand-coded features do not well capture the semantics of texts. In this research, we argue that learning sentiment-specific semantic representations of documents is crucial for document-level sentiment analysis. We decompose the document semantics into four cascaded constitutes: (1) word representation, (2) sentence structure, (3) sentence composition and (4) document composition. Specifically, we learn sentiment-specific word representations, which simultaneously encode the contexts of words and the sentiment supervisions of texts into the continuous representation space. According to the principle of compositionality, we learn sentiment-specific sentence structures and sentence-level composition functions to produce the representation of each sentence based on the representations of the words it contains. The semantic representations of documents are obtained through document composition, which leverages the sentiment-sensitive discourse relations and sentence representations.","PeriodicalId":179443,"journal":{"name":"Proceedings of the Eighth ACM International Conference on Web Search and Data Mining","volume":"47 43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eighth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2684822.2697035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

In this paper, we propose a representation learning research framework for document-level sentiment analysis. Given a document as the input, document-level sentiment analysis aims to automatically classify its sentiment/opinion (such as thumbs up or thumbs down) based on the textural information. Despite the success of feature engineering in many previous studies, the hand-coded features do not well capture the semantics of texts. In this research, we argue that learning sentiment-specific semantic representations of documents is crucial for document-level sentiment analysis. We decompose the document semantics into four cascaded constitutes: (1) word representation, (2) sentence structure, (3) sentence composition and (4) document composition. Specifically, we learn sentiment-specific word representations, which simultaneously encode the contexts of words and the sentiment supervisions of texts into the continuous representation space. According to the principle of compositionality, we learn sentiment-specific sentence structures and sentence-level composition functions to produce the representation of each sentence based on the representations of the words it contains. The semantic representations of documents are obtained through document composition, which leverages the sentiment-sensitive discourse relations and sentence representations.
面向文档级情感分析的情感特定表示学习
在本文中,我们提出了一个用于文档级情感分析的表示学习研究框架。给定一个文档作为输入,文档级情感分析的目的是基于纹理信息自动对其情感/观点(例如大拇指赞或大拇指不赞)进行分类。尽管特征工程在许多先前的研究中取得了成功,但手工编码的特征并不能很好地捕捉文本的语义。在本研究中,我们认为学习文档的特定情感语义表示对于文档级情感分析至关重要。我们将文档语义分解为四个级联的组成部分:(1)单词表示,(2)句子结构,(3)句子组成和(4)文档组成。具体来说,我们学习特定情感的单词表示,它同时将单词的上下文和文本的情感监督编码到连续的表示空间中。根据组合性原则,我们学习特定情感的句子结构和句子级的组合函数,根据每个句子所包含的单词的表示来产生每个句子的表示。文章的语义表示是通过文章合成来实现的,文章合成利用了情感敏感的话语关系和句子表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信