Indoor Localization Based on Sparse TDOA Fingerprints

Guanglie Ouyang, Tinghao Qi, Lixiao Wei, Bang Wang
{"title":"Indoor Localization Based on Sparse TDOA Fingerprints","authors":"Guanglie Ouyang, Tinghao Qi, Lixiao Wei, Bang Wang","doi":"10.1109/CSE57773.2022.00010","DOIUrl":null,"url":null,"abstract":"Fingerprint-based indoor localization methods usually use received signal strength (RSS) and channel status information (CSI) as the localization fingerprint, which suffers from time-consuming and labor-intensive site survey. In this paper, we propose an indoor localization method based on sparse time difference of arrival (TDOA) fingerprints. This method constructs the localization fingerprints by TDOA, which is calibrated by the straight line fitting method and the beacon estimation method. In order to get the dense fingerprint database, we propose a TDOA interpolation method based on distance relation. Experiments on field measurements validate the effectiveness of the proposed method. In the case of only sampling three reference points (RPs), the average localization error (ALE) of the proposed method reaches 0.824 m, which obtains a 48.8 % improvement compared with the traditional TDOA algorithm,","PeriodicalId":165085,"journal":{"name":"2022 IEEE 25th International Conference on Computational Science and Engineering (CSE)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 25th International Conference on Computational Science and Engineering (CSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSE57773.2022.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fingerprint-based indoor localization methods usually use received signal strength (RSS) and channel status information (CSI) as the localization fingerprint, which suffers from time-consuming and labor-intensive site survey. In this paper, we propose an indoor localization method based on sparse time difference of arrival (TDOA) fingerprints. This method constructs the localization fingerprints by TDOA, which is calibrated by the straight line fitting method and the beacon estimation method. In order to get the dense fingerprint database, we propose a TDOA interpolation method based on distance relation. Experiments on field measurements validate the effectiveness of the proposed method. In the case of only sampling three reference points (RPs), the average localization error (ALE) of the proposed method reaches 0.824 m, which obtains a 48.8 % improvement compared with the traditional TDOA algorithm,
基于稀疏TDOA指纹的室内定位
基于指纹的室内定位方法通常采用接收信号强度(RSS)和通道状态信息(CSI)作为定位指纹,存在现场调查费时费力的问题。本文提出了一种基于稀疏到达时间差(TDOA)指纹的室内定位方法。该方法采用直线拟合和信标估计相结合的方法构建定位指纹。为了获得密集的指纹数据库,提出了一种基于距离关系的TDOA插值方法。现场实测实验验证了该方法的有效性。在仅采样3个参考点的情况下,该方法的平均定位误差(ALE)达到0.824 m,比传统的TDOA算法提高了48.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信