Error estimates for filtered back projection

Matthias Beckmann, A. Iske
{"title":"Error estimates for filtered back projection","authors":"Matthias Beckmann, A. Iske","doi":"10.1109/SAMPTA.2015.7148952","DOIUrl":null,"url":null,"abstract":"Computerized tomography allows us to reconstruct a bivariate function from its Radon samples. The reconstruction is based on the filtered back projection (FBP) formula, which gives an analytical inversion of the Radon transform. The FBP formula, however, is numerically unstable. Therefore, suitable low-pass filters of finite bandwidth are employed to make the reconstruction by FBP less sensitive to noise. The objective of this paper is to analyse the reconstruction error occurring due to the use of a low-pass filter. To this end, we prove L2 error estimates on Sobolev spaces of fractional order. The obtained error estimates are affine-linear with respect to the distance between the filter's window function and the constant function 1 in the L∞-norm. Our theoretical results are supported by numerical simulations, where in particular the predicted affine-linear behaviour of the error is observed.","PeriodicalId":311830,"journal":{"name":"2015 International Conference on Sampling Theory and Applications (SampTA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Sampling Theory and Applications (SampTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMPTA.2015.7148952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Computerized tomography allows us to reconstruct a bivariate function from its Radon samples. The reconstruction is based on the filtered back projection (FBP) formula, which gives an analytical inversion of the Radon transform. The FBP formula, however, is numerically unstable. Therefore, suitable low-pass filters of finite bandwidth are employed to make the reconstruction by FBP less sensitive to noise. The objective of this paper is to analyse the reconstruction error occurring due to the use of a low-pass filter. To this end, we prove L2 error estimates on Sobolev spaces of fractional order. The obtained error estimates are affine-linear with respect to the distance between the filter's window function and the constant function 1 in the L∞-norm. Our theoretical results are supported by numerical simulations, where in particular the predicted affine-linear behaviour of the error is observed.
滤波后反投影的误差估计
计算机断层扫描使我们能够从氡样本中重建二元函数。重建基于滤波反投影(FBP)公式,该公式给出了Radon变换的解析反演。然而,FBP公式在数值上不稳定。因此,采用合适的有限带宽低通滤波器,使FBP重构对噪声的敏感性降低。本文的目的是分析由于使用低通滤波器而产生的重构误差。为此,我们证明了分数阶Sobolev空间上的L2误差估计。得到的误差估计是仿射线性的,相对于滤波器的窗口函数和L∞范数中的常数函数1之间的距离。我们的理论结果得到了数值模拟的支持,特别是观察到误差的预测仿射线性行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信