Laplacian Pyramid of Conditional Variational Autoencoders

Garoe Dorta, S. Vicente, L. Agapito, N. Campbell, S. Prince, Ivor J. A. Simpson
{"title":"Laplacian Pyramid of Conditional Variational Autoencoders","authors":"Garoe Dorta, S. Vicente, L. Agapito, N. Campbell, S. Prince, Ivor J. A. Simpson","doi":"10.1145/3150165.3150172","DOIUrl":null,"url":null,"abstract":"Variational Autoencoders (VAE) learn a latent representation of image data that allows natural image generation and manipulation. However, they struggle to generate sharp images. To address this problem, we propose a hierarchy of VAEs analogous to a Laplacian pyramid. Each network models a single pyramid level, and is conditioned on the coarser levels. The Laplacian architecture allows for novel image editing applications that take advantage of the coarse to fine structure of the model. Our method achieves lower reconstruction error in terms of MSE, which is the loss function of the VAE and is not directly minimised in our model. Furthermore, the reconstructions generated by the proposed model are preferred over those from the VAE by human evaluators.","PeriodicalId":412591,"journal":{"name":"Proceedings of the 14th European Conference on Visual Media Production (CVMP 2017)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th European Conference on Visual Media Production (CVMP 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3150165.3150172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Variational Autoencoders (VAE) learn a latent representation of image data that allows natural image generation and manipulation. However, they struggle to generate sharp images. To address this problem, we propose a hierarchy of VAEs analogous to a Laplacian pyramid. Each network models a single pyramid level, and is conditioned on the coarser levels. The Laplacian architecture allows for novel image editing applications that take advantage of the coarse to fine structure of the model. Our method achieves lower reconstruction error in terms of MSE, which is the loss function of the VAE and is not directly minimised in our model. Furthermore, the reconstructions generated by the proposed model are preferred over those from the VAE by human evaluators.
条件变分自编码器的拉普拉斯金字塔
变分自编码器(VAE)学习图像数据的潜在表示,允许自然图像生成和操作。然而,它们很难产生清晰的图像。为了解决这个问题,我们提出了一个类似于拉普拉斯金字塔的VAEs层次结构。每个网络都有一个金字塔级别的模型,并以较粗的级别为条件。拉普拉斯架构允许利用模型的粗到细结构的新颖图像编辑应用程序。我们的方法在MSE方面实现了较低的重建误差,MSE是VAE的损失函数,在我们的模型中没有直接最小化。此外,由所提出的模型产生的重建比由人工评估者从VAE产生的重建更受青睐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信