Garoe Dorta, S. Vicente, L. Agapito, N. Campbell, S. Prince, Ivor J. A. Simpson
{"title":"Laplacian Pyramid of Conditional Variational Autoencoders","authors":"Garoe Dorta, S. Vicente, L. Agapito, N. Campbell, S. Prince, Ivor J. A. Simpson","doi":"10.1145/3150165.3150172","DOIUrl":null,"url":null,"abstract":"Variational Autoencoders (VAE) learn a latent representation of image data that allows natural image generation and manipulation. However, they struggle to generate sharp images. To address this problem, we propose a hierarchy of VAEs analogous to a Laplacian pyramid. Each network models a single pyramid level, and is conditioned on the coarser levels. The Laplacian architecture allows for novel image editing applications that take advantage of the coarse to fine structure of the model. Our method achieves lower reconstruction error in terms of MSE, which is the loss function of the VAE and is not directly minimised in our model. Furthermore, the reconstructions generated by the proposed model are preferred over those from the VAE by human evaluators.","PeriodicalId":412591,"journal":{"name":"Proceedings of the 14th European Conference on Visual Media Production (CVMP 2017)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 14th European Conference on Visual Media Production (CVMP 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3150165.3150172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Variational Autoencoders (VAE) learn a latent representation of image data that allows natural image generation and manipulation. However, they struggle to generate sharp images. To address this problem, we propose a hierarchy of VAEs analogous to a Laplacian pyramid. Each network models a single pyramid level, and is conditioned on the coarser levels. The Laplacian architecture allows for novel image editing applications that take advantage of the coarse to fine structure of the model. Our method achieves lower reconstruction error in terms of MSE, which is the loss function of the VAE and is not directly minimised in our model. Furthermore, the reconstructions generated by the proposed model are preferred over those from the VAE by human evaluators.