On the Joint Entropy of $d$-Wise-Independent Variables

Dmitry Gavinsky, P. Pudlák
{"title":"On the Joint Entropy of $d$-Wise-Independent Variables","authors":"Dmitry Gavinsky, P. Pudlák","doi":"10.14712/1213-7243.2015.169","DOIUrl":null,"url":null,"abstract":"How low can the joint entropy of $n$ $d$-wise independent (for $d\\ge2$) discrete random variables be, subject to given constraints on the individual distributions (say, no value may be taken by a variable with probability greater than $p$, for $p<1$)? This question has been posed and partially answered in a recent work of Babai. \nIn this paper we improve some of his bounds, prove new bounds in a wider range of parameters and show matching upper bounds in some special cases. In particular, we prove tight lower bounds for the min-entropy (as well as the entropy) of pairwise and three-wise independent balanced binary variables for infinitely many values of $n$.","PeriodicalId":111854,"journal":{"name":"arXiv: Discrete Mathematics","volume":"331 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14712/1213-7243.2015.169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

How low can the joint entropy of $n$ $d$-wise independent (for $d\ge2$) discrete random variables be, subject to given constraints on the individual distributions (say, no value may be taken by a variable with probability greater than $p$, for $p<1$)? This question has been posed and partially answered in a recent work of Babai. In this paper we improve some of his bounds, prove new bounds in a wider range of parameters and show matching upper bounds in some special cases. In particular, we prove tight lower bounds for the min-entropy (as well as the entropy) of pairwise and three-wise independent balanced binary variables for infinitely many values of $n$.
关于d -明智自变量的联合熵
$n$ d$明智的独立(对于$d\ge2$)离散随机变量的联合熵有多低,受制于对单个分布的给定约束(例如,对于$p<1$,一个变量的概率不可能大于$p$)?这个问题已经在Babai最近的作品中提出并部分回答了。本文改进了他的一些界,在更大的参数范围内证明了新的界,并在一些特殊情况下给出了匹配的上界。特别地,我们证明了对于无限多个$n$值的两两和三向独立平衡二元变量的最小熵(以及熵)的紧下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信