The computational complexity of integer programming with alternations

Danny Nguyen, I. Pak
{"title":"The computational complexity of integer programming with alternations","authors":"Danny Nguyen, I. Pak","doi":"10.4230/LIPIcs.CCC.2017.6","DOIUrl":null,"url":null,"abstract":"We prove that integer programming with three quantifier alternations is $NP$-complete, even for a fixed number of variables. This complements earlier results by Lenstra and Kannan, which together say that integer programming with at most two quantifier alternations can be done in polynomial time for a fixed number of variables. As a byproduct of the proof, we show that for two polytopes $P,Q \\subset \\mathbb{R}^4$ , counting the projection of integer points in $Q \\backslash P$ is $\\#P$-complete. This contrasts the 2003 result by Barvinok and Woods, which allows counting in polynomial time the projection of integer points in $P$ and $Q$ separately.","PeriodicalId":246506,"journal":{"name":"Cybersecurity and Cyberforensics Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybersecurity and Cyberforensics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CCC.2017.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We prove that integer programming with three quantifier alternations is $NP$-complete, even for a fixed number of variables. This complements earlier results by Lenstra and Kannan, which together say that integer programming with at most two quantifier alternations can be done in polynomial time for a fixed number of variables. As a byproduct of the proof, we show that for two polytopes $P,Q \subset \mathbb{R}^4$ , counting the projection of integer points in $Q \backslash P$ is $\#P$-complete. This contrasts the 2003 result by Barvinok and Woods, which allows counting in polynomial time the projection of integer points in $P$ and $Q$ separately.
交替整数规划的计算复杂度
证明了具有三个量词交替的整数规划是$NP$完备的,即使对于固定数量的变量也是如此。这补充了Lenstra和Kannan早期的结果,他们共同表明,对于固定数量的变量,具有最多两个量词交替的整数规划可以在多项式时间内完成。作为证明的副产品,我们证明了对于两个多角形$P,Q \子集\mathbb{R}^4$,计算$Q \反斜线P$中整数点的投影是$\#P$-完全的。这与2003年Barvinok和Woods的结果形成了对比,后者允许在多项式时间内分别计算P$和Q$中整数点的投影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信