Structure and motion estimation in perspective systems using a dynamic vision parametrization

O. Dahl, Fredrik Nyberg, A. Heyden
{"title":"Structure and motion estimation in perspective systems using a dynamic vision parametrization","authors":"O. Dahl, Fredrik Nyberg, A. Heyden","doi":"10.23919/ECC.2007.7068925","DOIUrl":null,"url":null,"abstract":"Estimation of 3D structure and motion from 2D images in computer vision systems can be performed using a nonlinear dynamic system, often referred to as a perspective dynamic system. In this paper we describe how a specific parametrization of the perspective dynamic system can be utilized when formulating estimation problems for structure and motion. The parametrization allows for a single estimation problem formulation which is applicable to structure estimation as well as motion estimation. The parameters to be estimated appear explicitly in the resulting dynamic system, and available partial knowledge of parameters can be taken into account in a straightforward manner. The problem formulation allows estimators for structure and motion to be derived using available methods from nonlinear and adaptive control. We demonstrate how estimators for structure and motion can be constructed based on the parametrization, and illustrate the estimation performance by simulations. In this way, it is demonstrated how a nonlinear observer can be used for motion estimation as well as recovery of three-dimensional position in a monocular vision system, using measurements from two-dimensional images.","PeriodicalId":407048,"journal":{"name":"2007 European Control Conference (ECC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.2007.7068925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Estimation of 3D structure and motion from 2D images in computer vision systems can be performed using a nonlinear dynamic system, often referred to as a perspective dynamic system. In this paper we describe how a specific parametrization of the perspective dynamic system can be utilized when formulating estimation problems for structure and motion. The parametrization allows for a single estimation problem formulation which is applicable to structure estimation as well as motion estimation. The parameters to be estimated appear explicitly in the resulting dynamic system, and available partial knowledge of parameters can be taken into account in a straightforward manner. The problem formulation allows estimators for structure and motion to be derived using available methods from nonlinear and adaptive control. We demonstrate how estimators for structure and motion can be constructed based on the parametrization, and illustrate the estimation performance by simulations. In this way, it is demonstrated how a nonlinear observer can be used for motion estimation as well as recovery of three-dimensional position in a monocular vision system, using measurements from two-dimensional images.
基于动态视觉参数化的透视系统结构和运动估计
在计算机视觉系统中,从二维图像中估计三维结构和运动可以使用非线性动态系统来执行,通常称为透视动态系统。在本文中,我们描述了在制定结构和运动估计问题时如何利用透视动力系统的特定参数化。参数化允许一个单一的估计问题公式,适用于结构估计和运动估计。待估计的参数在得到的动态系统中显式出现,可用的部分参数知识可以以一种直接的方式考虑。问题的表述允许使用非线性和自适应控制的可用方法推导结构和运动的估计量。我们演示了如何基于参数化构造结构和运动的估计器,并通过仿真说明了估计的性能。通过这种方式,演示了非线性观测器如何用于运动估计以及单眼视觉系统中三维位置的恢复,使用来自二维图像的测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信