Identifying Bots in the Australian Twittersphere

Brenda Moon
{"title":"Identifying Bots in the Australian Twittersphere","authors":"Brenda Moon","doi":"10.1145/3097286.3097335","DOIUrl":null,"url":null,"abstract":"Identification of bots on Twitter can be difficult, and successful approaches often use an iterative workflow, applying different techniques to identify discrete groups of bots. This paper presents first results of the application of this iterative workflow to the Australian TrISMA collection, which contains the tweets of over 4 million Twitter accounts identified as being Australian. To our knowledge, this research undertakes the first comprehensive identification of bots in the Australian Twittersphere. The identified bots are then classified by bot type before the proportion of overall account and tweet numbers they represent is determined.","PeriodicalId":130378,"journal":{"name":"Proceedings of the 8th International Conference on Social Media & Society","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on Social Media & Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3097286.3097335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Identification of bots on Twitter can be difficult, and successful approaches often use an iterative workflow, applying different techniques to identify discrete groups of bots. This paper presents first results of the application of this iterative workflow to the Australian TrISMA collection, which contains the tweets of over 4 million Twitter accounts identified as being Australian. To our knowledge, this research undertakes the first comprehensive identification of bots in the Australian Twittersphere. The identified bots are then classified by bot type before the proportion of overall account and tweet numbers they represent is determined.
识别澳大利亚推特圈中的机器人
识别Twitter上的机器人可能很困难,成功的方法通常使用迭代的工作流程,应用不同的技术来识别离散的机器人组。本文介绍了将此迭代工作流应用于澳大利亚TrISMA集合的第一个结果,该集合包含超过400万个被确定为澳大利亚的Twitter帐户的推文。据我们所知,这项研究首次全面识别了澳大利亚twitter领域的机器人。然后根据机器人类型对识别出来的机器人进行分类,然后确定它们所代表的整体账户和推文数量的比例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信