Image Analysis Using Disc-Harmonic Moments and Their RST Invariants in Pattern Recognition

Driss Moujahid, O. Elharrouss, H. Tairi
{"title":"Image Analysis Using Disc-Harmonic Moments and Their RST Invariants in Pattern Recognition","authors":"Driss Moujahid, O. Elharrouss, H. Tairi","doi":"10.1109/CGIV.2016.37","DOIUrl":null,"url":null,"abstract":"Moments and moment invariants are the most useful tools in pattern recognition. Recently, the Conventional Disc-Harmonic Moments (CDHMs) are used to describe binary and gray scale images. In order to deal with color images in a holistic manner, these CDHMs are generalized as Quaternion Disc-Harmonic Moments (QDHMs) by using the quaternion algebra. Then the Rotation, Scaling and Translation (RST) invariants (CDHMIs and QDHMIs) are derived for more description of images that have undergone affine transformations. In this paper we first illustrate the discrimination power of these moments by evaluating their efficiency in image reconstruction application. Then we propose a new approach for human face recognition based on these moment invariants (CDHMIs and QDHMIs) as descriptors and the Support Vector Machine (SVM) as supervised learning models that analyze data and recognize patterns. Experimental results, obtained using two public datasets, show that the proposed approach is more efficient when the disc-harmonic moments are used instead of other existing descriptors.","PeriodicalId":351561,"journal":{"name":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 13th International Conference on Computer Graphics, Imaging and Visualization (CGiV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2016.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Moments and moment invariants are the most useful tools in pattern recognition. Recently, the Conventional Disc-Harmonic Moments (CDHMs) are used to describe binary and gray scale images. In order to deal with color images in a holistic manner, these CDHMs are generalized as Quaternion Disc-Harmonic Moments (QDHMs) by using the quaternion algebra. Then the Rotation, Scaling and Translation (RST) invariants (CDHMIs and QDHMIs) are derived for more description of images that have undergone affine transformations. In this paper we first illustrate the discrimination power of these moments by evaluating their efficiency in image reconstruction application. Then we propose a new approach for human face recognition based on these moment invariants (CDHMIs and QDHMIs) as descriptors and the Support Vector Machine (SVM) as supervised learning models that analyze data and recognize patterns. Experimental results, obtained using two public datasets, show that the proposed approach is more efficient when the disc-harmonic moments are used instead of other existing descriptors.
基于盘谐矩及其RST不变量的图像分析
矩和矩不变量是模式识别中最有用的工具。近年来,传统的圆盘谐波矩(CDHMs)被用于描述二值图像和灰度图像。为了对彩色图像进行整体处理,利用四元数代数将其广义化为四元数盘谐矩(qdhm)。然后导出旋转、缩放和平移(RST)不变量(cdhmi和qdhmi),以更好地描述经过仿射变换的图像。本文首先通过评价这些矩在图像重建中的应用效率来说明这些矩的识别能力。然后,我们提出了一种基于这些矩不变量(cdhmi和qdhmi)作为描述符,支持向量机(SVM)作为数据分析和模式识别的监督学习模型的人脸识别新方法。使用两个公开数据集的实验结果表明,当使用盘谐矩代替现有的描述符时,所提出的方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信