Estimation of Dynamic Laplacian Eigenvalues in Dynamic Consensus Networks

Fadel M. Lashhab
{"title":"Estimation of Dynamic Laplacian Eigenvalues in Dynamic Consensus Networks","authors":"Fadel M. Lashhab","doi":"10.1109/IEMTRONICS51293.2020.9216339","DOIUrl":null,"url":null,"abstract":"In this paper we generalize recent results on networks with static weights by introducing the idea of dynamic networks with real rational weights. Specifically, we consider networks whose nodes are transfer functions (typically integrators) and whose edges are strictly positive real transfer functions representing dynamical systems that couple the nodes. We show that strictly positive realness of the edges is a sufficient condition for dynamic networks to be stable (i.e., to reach consensus). To study the spectral properties of dynamic networks, we introduce the Dynamic Grounded Laplacian matrix, which is used to estimate lower and upper bounds for the real parts of the smallest and largest non-zero eigenvalues of the dynamic Laplacian matrix. These bounds can be used to obtain stability conditions using the Nyquist graphical stability test for undirected dynamic networks controlled using distributed controllers. Numerical simulations are provided to verify the effectiveness of the results.","PeriodicalId":269697,"journal":{"name":"2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMTRONICS51293.2020.9216339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we generalize recent results on networks with static weights by introducing the idea of dynamic networks with real rational weights. Specifically, we consider networks whose nodes are transfer functions (typically integrators) and whose edges are strictly positive real transfer functions representing dynamical systems that couple the nodes. We show that strictly positive realness of the edges is a sufficient condition for dynamic networks to be stable (i.e., to reach consensus). To study the spectral properties of dynamic networks, we introduce the Dynamic Grounded Laplacian matrix, which is used to estimate lower and upper bounds for the real parts of the smallest and largest non-zero eigenvalues of the dynamic Laplacian matrix. These bounds can be used to obtain stability conditions using the Nyquist graphical stability test for undirected dynamic networks controlled using distributed controllers. Numerical simulations are provided to verify the effectiveness of the results.
动态共识网络中动态拉普拉斯特征值的估计
本文通过引入实有理权动态网络的思想,推广了最近关于静态权网络的研究成果。具体来说,我们考虑节点是传递函数(通常是积分器)且其边是代表耦合节点的动态系统的严格正实传递函数的网络。我们证明了边的严格正实在性是动态网络稳定(即达成一致)的充分条件。为了研究动态网络的谱性质,我们引入了动态接地拉普拉斯矩阵,该矩阵用于估计动态拉普拉斯矩阵最小和最大非零特征值实部的下界和上界。这些边界可用于使用Nyquist图形稳定性测试来获得使用分布式控制器控制的无向动态网络的稳定性条件。通过数值仿真验证了所得结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信