Artur Costa-Pazo, David Jiménez-Cabello, Esteban Vázquez-Fernández, J. Alba-Castro, R. López-Sastre
{"title":"Generalized Presentation Attack Detection: a face anti-spoofing evaluation proposal","authors":"Artur Costa-Pazo, David Jiménez-Cabello, Esteban Vázquez-Fernández, J. Alba-Castro, R. López-Sastre","doi":"10.1109/ICB45273.2019.8987290","DOIUrl":null,"url":null,"abstract":"Over the past few years, Presentation Attack Detection (PAD) has become a fundamental part of facial recognition systems. Although much effort has been devoted to anti-spoofing research, generalization in real scenarios remains a challenge. In this paper we present a new open-source evaluation framework to study the generalization capacity of face PAD methods, coined here as face-GPAD. This framework facilitates the creation of new protocols focused on the generalization problem establishing fair procedures of evaluation and comparison between PAD solutions. We also introduce a large aggregated and categorized dataset to address the problem of incompatibility between publicly available datasets. Finally, we propose a benchmark adding two novel evaluation protocols: one for measuring the effect introduced by the variations in face resolution, and the second for evaluating the influence of adversarial operating conditions.","PeriodicalId":430846,"journal":{"name":"2019 International Conference on Biometrics (ICB)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB45273.2019.8987290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Over the past few years, Presentation Attack Detection (PAD) has become a fundamental part of facial recognition systems. Although much effort has been devoted to anti-spoofing research, generalization in real scenarios remains a challenge. In this paper we present a new open-source evaluation framework to study the generalization capacity of face PAD methods, coined here as face-GPAD. This framework facilitates the creation of new protocols focused on the generalization problem establishing fair procedures of evaluation and comparison between PAD solutions. We also introduce a large aggregated and categorized dataset to address the problem of incompatibility between publicly available datasets. Finally, we propose a benchmark adding two novel evaluation protocols: one for measuring the effect introduced by the variations in face resolution, and the second for evaluating the influence of adversarial operating conditions.