A Finite Element Method Based Approach of Modeling of a Piezoresistive Accelerometer by Incorporating Doping Profile of a Diffused Resistor

K. Meena, R. Mathew, A. Sankar
{"title":"A Finite Element Method Based Approach of Modeling of a Piezoresistive Accelerometer by Incorporating Doping Profile of a Diffused Resistor","authors":"K. Meena, R. Mathew, A. Sankar","doi":"10.1109/ICSENS.2018.8589691","DOIUrl":null,"url":null,"abstract":"Finite element analysis (FEA) is an efficient method to observe the behavior of a sensor and to optimize the design to achieve high performance. In the modeling of piezoresistive sensors, typical FEA techniques simplify the doping concentration as a constant profile throughout the junction depth of a piezoresistor. This approximation overestimates or underestimates the performance of the modeled device from the actual fabricated device. In this paper, a two-step modeling of piezoresistive sensors by incorporating nonuniformly doped piezoresistor is presented using TCAD TSUPREM4® and IntelliSuite® tools to achieve lower deviation between simulation and experimental results. The two-step modeling technique illustrates the method of choosing the number of slices and the slicing strategy to effectively model the uniform doping profile of a piezoresistor. A quad-beam proof-mass aligned piezoresistive accelerometer is considered for the validation of the modeling method by comparing the simulated results with the fabrication results. From the results, it is observed that the proposed adaptive slicing method with more slices at the surface of the piezoresistor provides the least deviation error of 5.43 %.","PeriodicalId":405874,"journal":{"name":"2018 IEEE SENSORS","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2018.8589691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Finite element analysis (FEA) is an efficient method to observe the behavior of a sensor and to optimize the design to achieve high performance. In the modeling of piezoresistive sensors, typical FEA techniques simplify the doping concentration as a constant profile throughout the junction depth of a piezoresistor. This approximation overestimates or underestimates the performance of the modeled device from the actual fabricated device. In this paper, a two-step modeling of piezoresistive sensors by incorporating nonuniformly doped piezoresistor is presented using TCAD TSUPREM4® and IntelliSuite® tools to achieve lower deviation between simulation and experimental results. The two-step modeling technique illustrates the method of choosing the number of slices and the slicing strategy to effectively model the uniform doping profile of a piezoresistor. A quad-beam proof-mass aligned piezoresistive accelerometer is considered for the validation of the modeling method by comparing the simulated results with the fabrication results. From the results, it is observed that the proposed adaptive slicing method with more slices at the surface of the piezoresistor provides the least deviation error of 5.43 %.
采用扩散电阻掺杂谱的压阻式加速度计有限元建模方法
有限元分析(FEA)是一种观察传感器行为和优化设计以实现高性能的有效方法。在压阻传感器的建模中,典型的有限元分析技术将掺杂浓度简化为整个压阻结深度的恒定分布。这种近似高估或低估了模拟器件与实际制造器件的性能。本文采用TCAD TSUPREM4®和IntelliSuite®工具对非均匀掺杂压阻传感器进行了两步建模,从而降低了仿真结果与实验结果之间的偏差。两步建模技术说明了选择切片数和切片策略的方法,以有效地模拟压敏电阻均匀掺杂的分布。以四光束证明质量对准压阻式加速度计为例,通过仿真结果与制造结果的比较,验证了建模方法的正确性。结果表明,在压敏电阻表面多片的自适应切片方法的误差最小,为5.43%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信