RLS-A reduced labeled samples approach for streaming imbalanced data with concept drift

Elaheh Arabmakki, M. Kantardzic, Tegjyot Singh Sethi
{"title":"RLS-A reduced labeled samples approach for streaming imbalanced data with concept drift","authors":"Elaheh Arabmakki, M. Kantardzic, Tegjyot Singh Sethi","doi":"10.1109/IRI.2014.7051968","DOIUrl":null,"url":null,"abstract":"In the streaming data milieu, the input data distribution is not static and the models generated must be updated when concept drift occurs, to maintain the classification performance. Updating a model requires retraining with the new incoming labeled samples. However, labeling data is a costly and time-consuming process and designing algorithms which do not require all the instances in the stream to be labeled, is needed. In this paper, a new Reduced Labeled Samples (RLS) framework is proposed, which can handle concept drift in imbalanced data streams, by selectively labeling only those set of samples which are the most useful in characterizing the drift, and thereby generating an updated model with fewer labeled samples. Experimental comparison with state of the art imbalanced stream classification algorithms shows that the RLS framework achieves comparable or better performance with requiring only 18% of the samples to be labeled.","PeriodicalId":360013,"journal":{"name":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration (IEEE IRI 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2014.7051968","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

In the streaming data milieu, the input data distribution is not static and the models generated must be updated when concept drift occurs, to maintain the classification performance. Updating a model requires retraining with the new incoming labeled samples. However, labeling data is a costly and time-consuming process and designing algorithms which do not require all the instances in the stream to be labeled, is needed. In this paper, a new Reduced Labeled Samples (RLS) framework is proposed, which can handle concept drift in imbalanced data streams, by selectively labeling only those set of samples which are the most useful in characterizing the drift, and thereby generating an updated model with fewer labeled samples. Experimental comparison with state of the art imbalanced stream classification algorithms shows that the RLS framework achieves comparable or better performance with requiring only 18% of the samples to be labeled.
rls -一种概念漂移不平衡数据流的简化标记样本方法
在流数据环境中,输入数据的分布不是静态的,当概念漂移发生时,必须对生成的模型进行更新,以保持分类性能。更新模型需要使用新输入的标记样本进行再训练。然而,标记数据是一个昂贵且耗时的过程,需要设计不需要标记流中所有实例的算法。本文提出了一种新的减少标记样本(RLS)框架,该框架可以处理不平衡数据流中的概念漂移,通过选择性地标记那些对表征漂移最有用的样本集,从而产生一个具有更少标记样本的更新模型。与最先进的不平衡流分类算法的实验比较表明,RLS框架只需要标记18%的样本,就可以达到相当或更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信