{"title":"Simulation-based planning of maintenance activities by a shifting priority method","authors":"M. Gopalakrishnan, A. Skoogh, C. Laroque","doi":"10.1109/WSC.2014.7020061","DOIUrl":null,"url":null,"abstract":"Machine failures are major causes of direct downtime as well as system losses (blocked and idle times) in production flows. A previous case study shows that prioritizing bottleneck machines over others has the potential to increase the throughput by about 5%. However, the bottleneck machine in a production system is not static throughout the process of production but shifts from time to time. The approach for this paper is to integrate dynamic maintenance strategies into scheduling of reactive maintenance using Discrete Event Simulation. The aim of the paper is to investigate how a shifting priority strategy could be integrated into the scheduling of reactive maintenance. The approach is applied to and evaluated in an automotive case-study, using simulation for decision support. This shows how to shift prioritization by tracking the momentary bottleneck of the system. The effect of shifting priorities for planning maintenance activities and its specific limitations is discussed.","PeriodicalId":446873,"journal":{"name":"Proceedings of the Winter Simulation Conference 2014","volume":"44 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Winter Simulation Conference 2014","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2014.7020061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Machine failures are major causes of direct downtime as well as system losses (blocked and idle times) in production flows. A previous case study shows that prioritizing bottleneck machines over others has the potential to increase the throughput by about 5%. However, the bottleneck machine in a production system is not static throughout the process of production but shifts from time to time. The approach for this paper is to integrate dynamic maintenance strategies into scheduling of reactive maintenance using Discrete Event Simulation. The aim of the paper is to investigate how a shifting priority strategy could be integrated into the scheduling of reactive maintenance. The approach is applied to and evaluated in an automotive case-study, using simulation for decision support. This shows how to shift prioritization by tracking the momentary bottleneck of the system. The effect of shifting priorities for planning maintenance activities and its specific limitations is discussed.