{"title":"A Novel Convolutional Regression Network for Cell Counting","authors":"Qian Liu, Anna Junker, K. Murakami, P. Hu","doi":"10.1109/ICBCB.2019.8854653","DOIUrl":null,"url":null,"abstract":"A stacked deep convolutional neural network (DCNN) model was generated to predict cell density maps and count cells. We treated the cell counting as a regression problem with a preprocessing step to generate cell density maps. We implemented this approach by integrating two trustworthy and state-of-art model architectures (U-net & VGG19). This method combines the advantages from both traditional segmentation-based and density-based methods. It overcomes the limitations such as cell clumping, overlapping, and it can also bypass the fine-tuning step which was necessary for previous density-based methods when applying to different datasets. A publicly available well-labeled dataset was used to train and test the model. An unlabeled real dataset which generated in-house was used to evaluate the performance.","PeriodicalId":136995,"journal":{"name":"2019 IEEE 7th International Conference on Bioinformatics and Computational Biology ( ICBCB)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 7th International Conference on Bioinformatics and Computational Biology ( ICBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBCB.2019.8854653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
A stacked deep convolutional neural network (DCNN) model was generated to predict cell density maps and count cells. We treated the cell counting as a regression problem with a preprocessing step to generate cell density maps. We implemented this approach by integrating two trustworthy and state-of-art model architectures (U-net & VGG19). This method combines the advantages from both traditional segmentation-based and density-based methods. It overcomes the limitations such as cell clumping, overlapping, and it can also bypass the fine-tuning step which was necessary for previous density-based methods when applying to different datasets. A publicly available well-labeled dataset was used to train and test the model. An unlabeled real dataset which generated in-house was used to evaluate the performance.