3D Registration of the Point Cloud Data Using Parameter Adaptive Super4PCS Algorithm in Medical Image Analysis

Shun Su, G. Song, Yiwen Zhao
{"title":"3D Registration of the Point Cloud Data Using Parameter Adaptive Super4PCS Algorithm in Medical Image Analysis","authors":"Shun Su, G. Song, Yiwen Zhao","doi":"10.1145/3506651.3506652","DOIUrl":null,"url":null,"abstract":"In this article, we use the parameter-adaptive Super4PCS algorithm to achieve high-precision registration of medical point clouds. First, generate the corresponding point cloud from the biological data (CT, MRI) to be registered. Then analyze the characteristics of the point cloud to be registered, and use it to adaptively set the parameters of Super4PCS, and finally perform point cloud registration. We compare the performance of six different algorithms with their accuracy and robustness. The accuracy, robustness of our method are the best. At the same time, no parameter input is required which is very convenient for medical workers. Experiments on medical models demonstrate the efficiency and robustness of our algorithm.","PeriodicalId":280080,"journal":{"name":"2021 4th International Conference on Digital Medicine and Image Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 4th International Conference on Digital Medicine and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3506651.3506652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we use the parameter-adaptive Super4PCS algorithm to achieve high-precision registration of medical point clouds. First, generate the corresponding point cloud from the biological data (CT, MRI) to be registered. Then analyze the characteristics of the point cloud to be registered, and use it to adaptively set the parameters of Super4PCS, and finally perform point cloud registration. We compare the performance of six different algorithms with their accuracy and robustness. The accuracy, robustness of our method are the best. At the same time, no parameter input is required which is very convenient for medical workers. Experiments on medical models demonstrate the efficiency and robustness of our algorithm.
医学图像分析中基于参数自适应Super4PCS算法的点云数据三维配准
本文采用参数自适应Super4PCS算法实现医疗点云的高精度配准。首先,从待配准的生物数据(CT、MRI)中生成相应的点云。然后分析待配准点云的特征,并利用其自适应设置Super4PCS的参数,最后进行点云配准。我们比较了六种不同算法的精度和鲁棒性。该方法具有较好的准确性和鲁棒性。同时不需要输入参数,非常方便医务人员使用。在医学模型上的实验证明了该算法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信