Combined use of MAP estimation and K-means classifier for speckle noise filtering in SAR images

F. Medeiros, N. Mascarenhas, L. da F Costa
{"title":"Combined use of MAP estimation and K-means classifier for speckle noise filtering in SAR images","authors":"F. Medeiros, N. Mascarenhas, L. da F Costa","doi":"10.1109/IAI.1998.666894","DOIUrl":null,"url":null,"abstract":"The main purpose of this work is to study and implement a maximum a posteriori (MAP) filter combined with the K-means algorithm in order to reduce speckle noise in SAR images. The K-means algorithm over Li's (1988) coefficient is used to classify the noisy image in regions of homogenous statistics. This kind of information is used as a guide for choosing the best window size for parameter estimation in the MAP filtering. This paper is based on the multiplicative model for speckle and considers different densities to describe the \"a priori\" knowledge. It suggests a new adaptive filtering algorithm based on the MAP approach and clustering.","PeriodicalId":373701,"journal":{"name":"1998 IEEE Southwest Symposium on Image Analysis and Interpretation (Cat. No.98EX165)","volume":"69 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 IEEE Southwest Symposium on Image Analysis and Interpretation (Cat. No.98EX165)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.1998.666894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The main purpose of this work is to study and implement a maximum a posteriori (MAP) filter combined with the K-means algorithm in order to reduce speckle noise in SAR images. The K-means algorithm over Li's (1988) coefficient is used to classify the noisy image in regions of homogenous statistics. This kind of information is used as a guide for choosing the best window size for parameter estimation in the MAP filtering. This paper is based on the multiplicative model for speckle and considers different densities to describe the "a priori" knowledge. It suggests a new adaptive filtering algorithm based on the MAP approach and clustering.
基于MAP估计和K-means分类器的SAR图像散斑噪声滤波
本文的主要目的是研究和实现一种结合K-means算法的最大后验(MAP)滤波器,以降低SAR图像中的斑点噪声。采用Li’s(1988)系数上的K-means算法对同质统计区域的噪声图像进行分类。这种信息被用作MAP滤波中选择参数估计的最佳窗口大小的指南。本文基于散斑的乘法模型,考虑不同密度来描述“先验”知识。提出了一种基于MAP方法和聚类的自适应滤波算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信