Alexander Poth, Burkhard Meyer, Peter Schlicht, A. Riel
{"title":"Quality Assurance for Machine Learning – an approach to function and system safeguarding","authors":"Alexander Poth, Burkhard Meyer, Peter Schlicht, A. Riel","doi":"10.1109/QRS51102.2020.00016","DOIUrl":null,"url":null,"abstract":"In an industrial context, high software quality is mandatory in order to avoid costly patching. We present a state of the art analysis of approaches to ensure that a specific Artificial Intelligence (AI) model is ready for release. We analyze the requirements a Machine Learning (ML) system has to fulfill in order to comply with the needs of an automotive OEM. The main implication for projects relying on ML is a holistic assessment of possible quality risks. These risks may stem from implemented ML models and spread into the delivery. We present a methodological quality assurance (QA) approach and its evaluation.","PeriodicalId":301814,"journal":{"name":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","volume":"29 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security (QRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS51102.2020.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
In an industrial context, high software quality is mandatory in order to avoid costly patching. We present a state of the art analysis of approaches to ensure that a specific Artificial Intelligence (AI) model is ready for release. We analyze the requirements a Machine Learning (ML) system has to fulfill in order to comply with the needs of an automotive OEM. The main implication for projects relying on ML is a holistic assessment of possible quality risks. These risks may stem from implemented ML models and spread into the delivery. We present a methodological quality assurance (QA) approach and its evaluation.