Preparing Legal Documents for NLP Analysis: Improving the Classification of Text Elements by Using Page Features

Frieda Josi, Christian Wartena, U. Heid
{"title":"Preparing Legal Documents for NLP Analysis: Improving the Classification of Text Elements by Using Page Features","authors":"Frieda Josi, Christian Wartena, U. Heid","doi":"10.5121/csit.2022.120102","DOIUrl":null,"url":null,"abstract":"Legal documents often have a complex layout with many different headings, headers and footers, side notes, etc. For the further processing, it is important to extract these individual components correctly from a legally binding document, for example a signed PDF. A common approach to do so is to classify each (text) region of a page using its geometric and textual features. This approach works well, when the training and test data have a similar structure and when the documents of a collection to be analyzed have a rather uniform layout. We show that the use of global page properties can improve the accuracy of text element classification: we first classify each page into one of three layout types. After that, we can train a classifier for each of the three page types and thereby improve the accuracy on a manually annotated collection of 70 legal documents consisting of 20,938 text elements. When we split by page type, we achieve an improvement from 0.95 to 0.98 for single-column pages with left marginalia and from 0.95 to 0.96 for double-column pages. We developed our own feature-based method for page layout detection, which we benchmark against a standard implementation of a CNN image classifier.","PeriodicalId":189285,"journal":{"name":"Natural Language Processing (NLP) Trends","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing (NLP) Trends","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.120102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Legal documents often have a complex layout with many different headings, headers and footers, side notes, etc. For the further processing, it is important to extract these individual components correctly from a legally binding document, for example a signed PDF. A common approach to do so is to classify each (text) region of a page using its geometric and textual features. This approach works well, when the training and test data have a similar structure and when the documents of a collection to be analyzed have a rather uniform layout. We show that the use of global page properties can improve the accuracy of text element classification: we first classify each page into one of three layout types. After that, we can train a classifier for each of the three page types and thereby improve the accuracy on a manually annotated collection of 70 legal documents consisting of 20,938 text elements. When we split by page type, we achieve an improvement from 0.95 to 0.98 for single-column pages with left marginalia and from 0.95 to 0.96 for double-column pages. We developed our own feature-based method for page layout detection, which we benchmark against a standard implementation of a CNN image classifier.
为NLP分析准备法律文件:利用页面特征改进文本元素的分类
法律文件通常有复杂的布局,有许多不同的标题、页眉和页脚、边注等。对于进一步的处理,重要的是从具有法律约束力的文档(例如签名的PDF)中正确提取这些单独的组件。一种常见的方法是使用页面的几何和文本特征对每个(文本)区域进行分类。当训练数据和测试数据具有相似的结构,并且要分析的集合的文档具有相当统一的布局时,这种方法工作得很好。我们展示了使用全局页面属性可以提高文本元素分类的准确性:我们首先将每个页面分类为三种布局类型之一。之后,我们可以为这三种页面类型中的每一种训练一个分类器,从而提高对由20,938个文本元素组成的70个手动注释的法律文件集合的准确性。当我们按页面类型进行拆分时,对于带有左边注的单列页面,我们实现了从0.95到0.98的改进,对于双列页面,我们实现了从0.95到0.96的改进。我们开发了自己的基于特征的页面布局检测方法,并对CNN图像分类器的标准实现进行了基准测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信