Maximizing Power Factor for Controlling the Load of an Electricity Consumers’ Group by the Second Chance Algorithm

A. P. Dimitriev, R. Bazhenov, L. Alekseeva
{"title":"Maximizing Power Factor for Controlling the Load of an Electricity Consumers’ Group by the Second Chance Algorithm","authors":"A. P. Dimitriev, R. Bazhenov, L. Alekseeva","doi":"10.1109/RusAutoCon52004.2021.9537489","DOIUrl":null,"url":null,"abstract":"This paper dwells on the issues of improving the switching schedule quality for a group of power consumers when using a pulse-width method of power control. In this regard, the authors comment on a corresponding discrete optimization problem, which is one of the NP-complete problems. They also review the expression for the objective function used to optimize such schedules. The second chance algorithm that the authors offer is based on two algorithms proposed before: the algorithm for finding the initial selection sequence close to an optimum and the selection sequence optimization algorithm based on the simulated annealing and the multi-start method. This algorithm allows finding schedules in polynomial time that are relatively close to optimal schedules in terms of the objective function value. The authors study the influence of various parameters of the second chance algorithm on the average value of the objective function for the resulting schedule. It is experimentally shown that for all 10 used sets of initial data for scheduling, the proposed algorithm is more efficient than previously known algorithms.","PeriodicalId":106150,"journal":{"name":"2021 International Russian Automation Conference (RusAutoCon)","volume":"498 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Russian Automation Conference (RusAutoCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RusAutoCon52004.2021.9537489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper dwells on the issues of improving the switching schedule quality for a group of power consumers when using a pulse-width method of power control. In this regard, the authors comment on a corresponding discrete optimization problem, which is one of the NP-complete problems. They also review the expression for the objective function used to optimize such schedules. The second chance algorithm that the authors offer is based on two algorithms proposed before: the algorithm for finding the initial selection sequence close to an optimum and the selection sequence optimization algorithm based on the simulated annealing and the multi-start method. This algorithm allows finding schedules in polynomial time that are relatively close to optimal schedules in terms of the objective function value. The authors study the influence of various parameters of the second chance algorithm on the average value of the objective function for the resulting schedule. It is experimentally shown that for all 10 used sets of initial data for scheduling, the proposed algorithm is more efficient than previously known algorithms.
利用二次机会算法最大化电力用户群负荷控制的功率因数
本文研究了采用脉宽功率控制方法提高一组电力用户的开关调度质量的问题。在这方面,作者评论了一个相应的离散优化问题,这是np完全问题之一。他们还回顾了用于优化这些时间表的目标函数的表达式。第二次机会算法是在前人提出的两种算法的基础上提出的:一种是寻找接近最优的初始选择序列的算法,另一种是基于模拟退火和多起点法的选择序列优化算法。该算法允许在多项式时间内找到相对接近目标函数值的最优调度。研究了二次机会算法中各参数对最终调度目标函数平均值的影响。实验表明,对于所有10个用于调度的初始数据集,所提出的算法比以前已知的算法效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信