Skin Cancer Detection and Classification for Moles Using K-Nearest Neighbor Algorithm

N. Linsangan, J. Adtoon
{"title":"Skin Cancer Detection and Classification for Moles Using K-Nearest Neighbor Algorithm","authors":"N. Linsangan, J. Adtoon","doi":"10.1145/3309129.3309141","DOIUrl":null,"url":null,"abstract":"The skin protects our body from heat and light of the sun and other threats. One of the illnesses that threaten the skin is the skin cancer. Skin cancer may start with an irregular shaped mole with size greater than a pencil eraser. This study focuses on the non-invasive approach in detecting and classifying skin cancer. Geometrical features of the moles suspected for skin cancer are extracted following the asymmetry, border, and diameter parameters of the ABCD-Rule of Dermoscopy. In particular, greatest and shortest diameter, irregularity index and equivalent diameter are the parameters loaded in the dataset for classification. Classification of mole images is done through k-Nearest Neighbors (k-NN) algorithm. The overall result showed 86.67% accuracy in determining the classification.","PeriodicalId":326530,"journal":{"name":"Proceedings of the 5th International Conference on Bioinformatics Research and Applications","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Conference on Bioinformatics Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3309129.3309141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The skin protects our body from heat and light of the sun and other threats. One of the illnesses that threaten the skin is the skin cancer. Skin cancer may start with an irregular shaped mole with size greater than a pencil eraser. This study focuses on the non-invasive approach in detecting and classifying skin cancer. Geometrical features of the moles suspected for skin cancer are extracted following the asymmetry, border, and diameter parameters of the ABCD-Rule of Dermoscopy. In particular, greatest and shortest diameter, irregularity index and equivalent diameter are the parameters loaded in the dataset for classification. Classification of mole images is done through k-Nearest Neighbors (k-NN) algorithm. The overall result showed 86.67% accuracy in determining the classification.
基于k -最近邻算法的皮肤癌痣检测与分类
皮肤保护我们的身体免受热、光和其他威胁。威胁皮肤的疾病之一是皮肤癌。皮肤癌可能从比铅笔橡皮还大的不规则痣开始。本研究主要探讨非侵入性方法在皮肤癌检测和分类中的应用。根据皮肤镜ABCD-Rule的不对称性、边界和直径参数提取疑似皮肤癌痣的几何特征。其中,最大直径和最短直径、不规则指数和等效直径是加载在数据集中用于分类的参数。通过k-最近邻(k-NN)算法对鼹鼠图像进行分类。总体结果判定准确率为86.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信