Neural network classification of spatio-temporal EEG readiness potentials

A. Barreto, A. Taberner, L.M. Vicente
{"title":"Neural network classification of spatio-temporal EEG readiness potentials","authors":"A. Barreto, A. Taberner, L.M. Vicente","doi":"10.1109/SBEC.1996.493116","DOIUrl":null,"url":null,"abstract":"The detection of spatio-temporal scalp EEG patterns associated with voluntary motion preparation towards the development of a brain-computer interface (BCI) is explored. The rationale for the use of a spatio-temporal approach to this detection problem is explained. The need for a temporal or dynamic classifier is confirmed by demonstration of the lack of robustness in static neural network classifiers with respect to time alignment of the patterns under analysis. The results from dynamic classifiers, such as the Time Delay Neural Network (TDNN) and the Gamma Neural Network are presented in terms of their Receiver Operating Characteristic (ROC) Curves.","PeriodicalId":294120,"journal":{"name":"Proceedings of the 1996 Fifteenth Southern Biomedical Engineering Conference","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1996 Fifteenth Southern Biomedical Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBEC.1996.493116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The detection of spatio-temporal scalp EEG patterns associated with voluntary motion preparation towards the development of a brain-computer interface (BCI) is explored. The rationale for the use of a spatio-temporal approach to this detection problem is explained. The need for a temporal or dynamic classifier is confirmed by demonstration of the lack of robustness in static neural network classifiers with respect to time alignment of the patterns under analysis. The results from dynamic classifiers, such as the Time Delay Neural Network (TDNN) and the Gamma Neural Network are presented in terms of their Receiver Operating Characteristic (ROC) Curves.
时空脑电准备电位的神经网络分类
研究了与自主运动准备相关的脑机接口(BCI)的时空头皮脑电图模式的检测。解释了使用时空方法处理这一检测问题的基本原理。静态神经网络分类器在分析模式的时间一致性方面缺乏鲁棒性,这证实了对时间或动态分类器的需求。动态分类器,如时滞神经网络(TDNN)和伽玛神经网络的结果以其接受者工作特征(ROC)曲线的形式呈现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信