Sparse Intensity Histogram: Distinctive and Robust to the Space-distortion

Hyeokjune Jeon, Jaekyong Jeong, Joonwoon Bang, Chijung Hwang
{"title":"Sparse Intensity Histogram: Distinctive and Robust to the Space-distortion","authors":"Hyeokjune Jeon, Jaekyong Jeong, Joonwoon Bang, Chijung Hwang","doi":"10.1109/ICAPR.2009.16","DOIUrl":null,"url":null,"abstract":"In this article, we propose an image descriptor which efficiently calculates the distance between images, saves to the disk compactly, and seeks a similar image related to a query robustly. The advantage of the proposed descriptor, sparse intensity histogram (SIH), is that it takes a robust approach to space distortion to the local descriptor, and that the speed of comparing are similar to the global descriptor because the SIH does not consider the spatial information, correspondence problem, to find the similar pairs of extracted descriptors between one and the other image. The experimental result shows that the proposed SIH has much better performance than the edge histogram descriptor in its accuracy.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2009.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we propose an image descriptor which efficiently calculates the distance between images, saves to the disk compactly, and seeks a similar image related to a query robustly. The advantage of the proposed descriptor, sparse intensity histogram (SIH), is that it takes a robust approach to space distortion to the local descriptor, and that the speed of comparing are similar to the global descriptor because the SIH does not consider the spatial information, correspondence problem, to find the similar pairs of extracted descriptors between one and the other image. The experimental result shows that the proposed SIH has much better performance than the edge histogram descriptor in its accuracy.
稀疏强度直方图:对空间失真具有显著性和鲁棒性
在本文中,我们提出了一种图像描述符,它可以有效地计算图像之间的距离,紧凑地保存到磁盘上,并鲁棒地寻找与查询相关的相似图像。所提出的描述符稀疏强度直方图(SIH)的优点在于,它对局部描述符的空间失真采取了鲁棒的处理方法,并且由于SIH不考虑空间信息、对应问题,因此比较速度与全局描述符相似,可以在一幅图像和另一幅图像之间找到相似的提取描述符对。实验结果表明,该方法在精度上明显优于边缘直方图描述子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信