Distributed stochastic optimization in opportunistic networks: the case of optimal relay selection

CHANTS '10 Pub Date : 2010-09-24 DOI:10.1145/1859934.1859939
Andreea Hossmann-Picu, T. Spyropoulos
{"title":"Distributed stochastic optimization in opportunistic networks: the case of optimal relay selection","authors":"Andreea Hossmann-Picu, T. Spyropoulos","doi":"10.1145/1859934.1859939","DOIUrl":null,"url":null,"abstract":"Opportunistic Networking allows wireless nodes to exchange data and information of interest with peers in communication range. These nodes form a large, dynamic, multi-hop network on the fly. Challenging optimization problems arise, such as end-to-end routing, resource allocation (e.g., for buffer space and bandwidth), content placement etc., exacerbated by the lack of end-to-end connectivity. While globally optimal solutions are normally sought in network optimization, node actions and decisions in this context are inherently local. As a result, most solutions proposed rely on local heuristics without any guarantees about their convergence properties towards a desired global outcome. In this paper, we argue that the framework of Markov Chain Monte Carlo (MCMC) optimization can be applied to many problems in Opportunistic Networking, providing efficient local algorithms that provably converge to a globally optimal solution. As a case study, we use the problem of optimal relay selection for group communication (e.g., multicast), based on node contact patterns.","PeriodicalId":404958,"journal":{"name":"CHANTS '10","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CHANTS '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1859934.1859939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Opportunistic Networking allows wireless nodes to exchange data and information of interest with peers in communication range. These nodes form a large, dynamic, multi-hop network on the fly. Challenging optimization problems arise, such as end-to-end routing, resource allocation (e.g., for buffer space and bandwidth), content placement etc., exacerbated by the lack of end-to-end connectivity. While globally optimal solutions are normally sought in network optimization, node actions and decisions in this context are inherently local. As a result, most solutions proposed rely on local heuristics without any guarantees about their convergence properties towards a desired global outcome. In this paper, we argue that the framework of Markov Chain Monte Carlo (MCMC) optimization can be applied to many problems in Opportunistic Networking, providing efficient local algorithms that provably converge to a globally optimal solution. As a case study, we use the problem of optimal relay selection for group communication (e.g., multicast), based on node contact patterns.
机会网络中的分布随机优化:最优中继选择的情况
机会网络允许无线节点与通信范围内的对等节点交换感兴趣的数据和信息。这些节点在运行中形成了一个大型的、动态的、多跳的网络。出现了具有挑战性的优化问题,例如端到端路由、资源分配(例如,缓冲区空间和带宽)、内容放置等,由于缺乏端到端连接而加剧了这些问题。虽然在网络优化中通常寻求全局最优解,但在这种情况下,节点的行为和决策本质上是局部的。因此,大多数解决方案都依赖于局部启发式,而不保证它们对期望的全局结果的收敛性。在本文中,我们认为马尔可夫链蒙特卡罗(MCMC)优化框架可以应用于机会网络中的许多问题,提供有效的局部算法,可证明收敛到全局最优解。作为一个案例研究,我们使用基于节点接触模式的组通信(例如,多播)的最佳中继选择问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信