Inference of a genetic regulatory network model from limited time series data

Saad Haider, R. Pal
{"title":"Inference of a genetic regulatory network model from limited time series data","authors":"Saad Haider, R. Pal","doi":"10.1109/GENSiPS.2011.6169470","DOIUrl":null,"url":null,"abstract":"Numerous approaches exist for modeling of genetic regulatory networks (GRNs) but the low sampling rates often employed in biological studies prevents the inference of detailed models from experimental data. In this paper, we analyze the issues involved in estimating a model of a GRN from single cell line time series data with limited time points. We present an inference approach for a Boolean Network (BN) model of a GRN from limited transcriptomic or proteomic time series data based on prior biological knowledge of connectivity, constraints on attractor structure and robust design. Through theoretical analysis and simulations, we showed the rarity of arriving at a BN from limited time series data with plausible biological structure using random connectivity and absence of structure in data. We applied our inference approach to 6 time point transcriptomic data on HMEC cell lines after application of EGF and generated a BN with a plausible biological structure satisfying the data.","PeriodicalId":181666,"journal":{"name":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","volume":"18 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSiPS.2011.6169470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Numerous approaches exist for modeling of genetic regulatory networks (GRNs) but the low sampling rates often employed in biological studies prevents the inference of detailed models from experimental data. In this paper, we analyze the issues involved in estimating a model of a GRN from single cell line time series data with limited time points. We present an inference approach for a Boolean Network (BN) model of a GRN from limited transcriptomic or proteomic time series data based on prior biological knowledge of connectivity, constraints on attractor structure and robust design. Through theoretical analysis and simulations, we showed the rarity of arriving at a BN from limited time series data with plausible biological structure using random connectivity and absence of structure in data. We applied our inference approach to 6 time point transcriptomic data on HMEC cell lines after application of EGF and generated a BN with a plausible biological structure satisfying the data.
从有限时间序列数据推断遗传调控网络模型
遗传调控网络(grn)的建模方法有很多,但生物学研究中经常采用的低采样率阻碍了从实验数据中推断出详细的模型。在本文中,我们分析了从具有有限时间点的单细胞系时间序列数据估计GRN模型所涉及的问题。我们提出了一种基于连接的先验生物学知识、吸引子结构约束和鲁棒设计的基于有限转录组或蛋白质组时间序列数据的GRN布尔网络(BN)模型的推理方法。通过理论分析和模拟,我们证明了利用随机连通性和数据中缺乏结构从具有合理生物结构的有限时间序列数据中获得BN的罕见性。我们将我们的推理方法应用于应用EGF后HMEC细胞系的6个时间点转录组学数据,并生成具有合理生物结构的BN,满足数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信