DeepCAT: A Cost-Efficient Online Configuration Auto-Tuning Approach for Big Data Frameworks

Hui Dou, Yilun Wang, Yiwen Zhang, Pengfei Chen
{"title":"DeepCAT: A Cost-Efficient Online Configuration Auto-Tuning Approach for Big Data Frameworks","authors":"Hui Dou, Yilun Wang, Yiwen Zhang, Pengfei Chen","doi":"10.1145/3545008.3545018","DOIUrl":null,"url":null,"abstract":"To support different application scenarios, big data frameworks usually provide a large number of performance-related configuration parameters. Online auto-tuning these parameters based on deep reinforcement learning to achieve a better performance has shown their advantages over search-based and machine learning-based approaches. Unfortunately, the time consumption during the online tuning phase of conventional DRL-based methods is still heavy, especially for big data applications. Therefore, in this paper, we propose DeepCAT, a cost-efficient deep reinforcement learning-based approach to achieve online configuration auto-tuning for big data frameworks. To reduce the total online tuning cost: 1) DeepCAT utilizes the TD3 algorithm instead of DDPG to alleviate value overestimation; 2) DeepCAT modifies the conventional experience replay to fully utilize the rare but valuable transitions via a novel reward-driven prioritized experience replay mechanism; 3) DeepCAT designs a Twin-Q Optimizer to estimate the execution time of each action without the costly configuration evaluation and optimize the sub-optimal ones to achieve a low-cost exploration-exploitation trade off. Experimental results based on a local 3-node Spark cluster and HiBench benchmark applications show that DeepCAT is able to speed up the best execution time by a factor of 1.45 × and 1.65 × on average respectively over CDBTune and OtterTune, while consuming up to 50.08% and 53.39% less total tuning time.","PeriodicalId":360504,"journal":{"name":"Proceedings of the 51st International Conference on Parallel Processing","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 51st International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3545008.3545018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To support different application scenarios, big data frameworks usually provide a large number of performance-related configuration parameters. Online auto-tuning these parameters based on deep reinforcement learning to achieve a better performance has shown their advantages over search-based and machine learning-based approaches. Unfortunately, the time consumption during the online tuning phase of conventional DRL-based methods is still heavy, especially for big data applications. Therefore, in this paper, we propose DeepCAT, a cost-efficient deep reinforcement learning-based approach to achieve online configuration auto-tuning for big data frameworks. To reduce the total online tuning cost: 1) DeepCAT utilizes the TD3 algorithm instead of DDPG to alleviate value overestimation; 2) DeepCAT modifies the conventional experience replay to fully utilize the rare but valuable transitions via a novel reward-driven prioritized experience replay mechanism; 3) DeepCAT designs a Twin-Q Optimizer to estimate the execution time of each action without the costly configuration evaluation and optimize the sub-optimal ones to achieve a low-cost exploration-exploitation trade off. Experimental results based on a local 3-node Spark cluster and HiBench benchmark applications show that DeepCAT is able to speed up the best execution time by a factor of 1.45 × and 1.65 × on average respectively over CDBTune and OtterTune, while consuming up to 50.08% and 53.39% less total tuning time.
DeepCAT:一种经济高效的大数据框架在线配置自动调优方法
为了支持不同的应用场景,大数据框架通常会提供大量与性能相关的配置参数。基于深度强化学习的在线自动调整这些参数以获得更好的性能已经显示出它们比基于搜索和基于机器学习的方法的优势。遗憾的是,传统的基于drl的方法在在线调优阶段的时间消耗仍然很大,特别是对于大数据应用。因此,在本文中,我们提出了DeepCAT,一种经济高效的基于深度强化学习的方法,用于实现大数据框架的在线配置自动调优。为了降低总在线调优成本:1)DeepCAT使用TD3算法代替DDPG,以减轻值高估;2) DeepCAT通过一种新颖的奖励驱动的优先体验重播机制,修改了传统的体验重播,充分利用了罕见但有价值的过渡;3) DeepCAT设计了一个Twin-Q优化器来估计每个动作的执行时间,而不需要进行昂贵的配置评估,并优化次优操作,以实现低成本的勘探开发权衡。基于本地3节点Spark集群和HiBench基准测试应用的实验结果表明,DeepCAT能够比CDBTune和OtterTune平均提高1.45倍和1.65倍的最佳执行时间,而总调优时间分别减少50.08%和53.39%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信