Unsupervised Hierarchical Translation-Based Model for Multi-Modal Medical Image Registration

X. Dai, Tai Ma, Haibin Cai, Ying Wen
{"title":"Unsupervised Hierarchical Translation-Based Model for Multi-Modal Medical Image Registration","authors":"X. Dai, Tai Ma, Haibin Cai, Ying Wen","doi":"10.1109/ICASSP43922.2022.9746324","DOIUrl":null,"url":null,"abstract":"Deformable registration of multi-modal medical images is a challenging task in medical image processing due to the differences in both appearance and structure. We propose an unsupervised hierarchical translation-based model to perform a coarse to fine registration of multi-modal medical images. The proposed model consists of three parts: a coarse registration network, a modal translation network and a fine registration network. First, the coarse registration network learns to obtain the coarse deformation field, which is applied as structure-preserving information to generate a translated image by the modal translation network. Then, the translated image as enhancing information combined with the original images are used to derive a fine deformation field in the fine registration network. Furthermore, the final deformation field is composed from the coarse and the fine deformation fields. In this way, the proposed model can learn high accurate deformation field to implement multi-modal medical image registration. Experiments on two multi-modal brain image datasets demonstrate the effectiveness of this model.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP43922.2022.9746324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Deformable registration of multi-modal medical images is a challenging task in medical image processing due to the differences in both appearance and structure. We propose an unsupervised hierarchical translation-based model to perform a coarse to fine registration of multi-modal medical images. The proposed model consists of three parts: a coarse registration network, a modal translation network and a fine registration network. First, the coarse registration network learns to obtain the coarse deformation field, which is applied as structure-preserving information to generate a translated image by the modal translation network. Then, the translated image as enhancing information combined with the original images are used to derive a fine deformation field in the fine registration network. Furthermore, the final deformation field is composed from the coarse and the fine deformation fields. In this way, the proposed model can learn high accurate deformation field to implement multi-modal medical image registration. Experiments on two multi-modal brain image datasets demonstrate the effectiveness of this model.
基于无监督分层翻译的多模态医学图像配准模型
由于多模态医学图像在外观和结构上的差异,多模态医学图像的形变配准是医学图像处理中的一个难题。我们提出了一种基于无监督分层翻译的模型来对多模态医学图像进行从粗到精的配准。该模型由三部分组成:粗配准网络、模态翻译网络和精细配准网络。首先,粗配准网络学习获取粗变形场,并将其作为保持结构的信息,通过模态平移网络生成翻译图像;然后,将翻译后的图像作为增强信息与原始图像结合,在精细配准网络中得到精细形变场;最终变形场由粗变形场和细变形场组成。这样,该模型可以学习高精度的形变场,实现多模态医学图像配准。在两个多模态脑图像数据集上的实验验证了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信