Hand Segmentation by Fusing 2D and 3D Data

R. Hassanpour, A. Shahbahrami, Stephan Wong
{"title":"Hand Segmentation by Fusing 2D and 3D Data","authors":"R. Hassanpour, A. Shahbahrami, Stephan Wong","doi":"10.1109/ICCMS.2010.396","DOIUrl":null,"url":null,"abstract":"This paper describes a robust technique based on the fusion of 2D data and 3D information for hand segmentation. 2D data is the closed region delineated by the boundary and the color information. 3D data is provided by estimating the disparity map using images from two apart cameras. The disparity map is used for generating an intensity image with a rough range estimation for each pixel. The color and range information are fused as the input data for the segmentation algorithm. Our proposed segmentation technique is based on the Gaussian Mixture Model (GMM) which helps us to determine the hand region pixel clusters in the fused data. The experimental results show that the proposed segmentation technique can successfully segment the hand from users body, face, arm or other objects in the scene under variant illumination conditions in real time.","PeriodicalId":153175,"journal":{"name":"2010 Second International Conference on Computer Modeling and Simulation","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computer Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMS.2010.396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper describes a robust technique based on the fusion of 2D data and 3D information for hand segmentation. 2D data is the closed region delineated by the boundary and the color information. 3D data is provided by estimating the disparity map using images from two apart cameras. The disparity map is used for generating an intensity image with a rough range estimation for each pixel. The color and range information are fused as the input data for the segmentation algorithm. Our proposed segmentation technique is based on the Gaussian Mixture Model (GMM) which helps us to determine the hand region pixel clusters in the fused data. The experimental results show that the proposed segmentation technique can successfully segment the hand from users body, face, arm or other objects in the scene under variant illumination conditions in real time.
基于二维和三维数据融合的手部分割
本文提出了一种基于二维数据和三维信息融合的鲁棒手部分割技术。二维数据是由边界和颜色信息圈定的封闭区域。三维数据是通过使用两个分开的相机的图像来估计视差图来提供的。视差图用于生成具有每个像素的粗略范围估计的强度图像。融合颜色和距离信息作为分割算法的输入数据。我们提出的分割技术是基于高斯混合模型(GMM)的,它可以帮助我们确定融合数据中的手部区域像素簇。实验结果表明,所提出的分割技术能够在不同光照条件下实时地从场景中用户的身体、面部、手臂或其他物体中成功分割出手。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信