On Asymptotic Mean Integrated Squared Error’s Reduction Techniques in Kernel Density Estimation

I. U. Siloko, E. A. Siloko, O. Ikpotokin, C. Ishiekwene, B. A. Afere
{"title":"On Asymptotic Mean Integrated Squared Error’s Reduction Techniques in Kernel Density Estimation","authors":"I. U. Siloko, E. A. Siloko, O. Ikpotokin, C. Ishiekwene, B. A. Afere","doi":"10.12785/IJCTS/060110","DOIUrl":null,"url":null,"abstract":"The techniques of asymptotic mean integrated squared error’s reduction in kernel density estimation is the focus of this paper. The asymptotic mean integrated squared error (AMISE) is an optimality criterion function that measures the performance of a kernel density estimator. This criterion function is made up of two components, and the contributions of both components to the AMISE are mainly regulated by the smoothing parameter. Kernel density estimation are of vitally importance in statistical data analysis especially for exploratory and visualization purposes. In performance evaluation, a method is better when it produces a smaller value of the AMISE; hence effort is being made to develop techniques that reduce the AMISE while ensuring that in practical implementation using real data, the statistical properties of the given observations are retained. We consider the kernel density derivative and kernel boosting as the AMISE reduction techniques. In kernel boosting, we introduce the optimal smoothing parameter selector for each boosting steps as the number of iteration increases. The presented results show that the AMISE decreases with higher kernel derivatives and also as the number of boosting steps increases.","PeriodicalId":373764,"journal":{"name":"International Journal of Computational and Theoretical Statistics","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational and Theoretical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12785/IJCTS/060110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The techniques of asymptotic mean integrated squared error’s reduction in kernel density estimation is the focus of this paper. The asymptotic mean integrated squared error (AMISE) is an optimality criterion function that measures the performance of a kernel density estimator. This criterion function is made up of two components, and the contributions of both components to the AMISE are mainly regulated by the smoothing parameter. Kernel density estimation are of vitally importance in statistical data analysis especially for exploratory and visualization purposes. In performance evaluation, a method is better when it produces a smaller value of the AMISE; hence effort is being made to develop techniques that reduce the AMISE while ensuring that in practical implementation using real data, the statistical properties of the given observations are retained. We consider the kernel density derivative and kernel boosting as the AMISE reduction techniques. In kernel boosting, we introduce the optimal smoothing parameter selector for each boosting steps as the number of iteration increases. The presented results show that the AMISE decreases with higher kernel derivatives and also as the number of boosting steps increases.
核密度估计中的渐近均值积分平方误差减小技术
本文重点研究了核密度估计中均值积分平方误差的渐近减小技术。渐近平均积分平方误差(AMISE)是衡量核密度估计器性能的最优性准则函数。该准则函数由两个分量组成,两个分量对AMISE的贡献主要受平滑参数的调节。核密度估计在统计数据分析中具有非常重要的意义,特别是在探索性和可视化方面。在性能评价中,一种方法产生的AMISE值越小越好;因此,目前正在努力发展技术,以减少非遗监测结果,同时确保在使用真实数据的实际执行中保留给定观测结果的统计特性。我们考虑核密度导数和核增强作为AMISE的减少技术。在核提升中,随着迭代次数的增加,我们为每个提升步骤引入最优平滑参数选择器。结果表明,随着核导数的增大和升压步数的增加,AMISE减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信