BVRIQE: A Completely Blind No Reference Virtual Reality Image Quality Evaluator

A. Poreddy, Balasubramanyam Appina
{"title":"BVRIQE: A Completely Blind No Reference Virtual Reality Image Quality Evaluator","authors":"A. Poreddy, Balasubramanyam Appina","doi":"10.1109/SPCOM55316.2022.9840855","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a framework to assess the perceptual quality of Virtual Reality (VR) images by studying the joint dependencies between luminance and disparity pairs using Bivariate Generalized Gaussian Distribution (BGGD) model. We compute model parameters ($\\alpha,\\ \\beta$) of BGGD at multi-scale and multi-orient steerable pyramid decomposition of the cube map projection (CMP) faces of both left and right views of a VR image. We learn Multivariate Gaussian (MVG) model parameters from BGGD features of CMP faces of pristine images as a reference quality representative. We compute Mahalanobis distance between pristine MVG model parameters and distorted image BGGD features to estimate the joint luminance and disparity quality score of a CMP face of a test VR image. We generate an inner map from saliency and phase congruency maps of CMP faces of both left and right views of a VR image. We compute entropy scores of the inner map to pool the joint luminance and disparity quality score of a VR image. Further, we apply IL-NIQE model on CMP faces to derive the overall spatial quality score of a test VR image. Finally, we pool the spatial IL-NIQE score and CMP face level quality score to estimate the overall quality score of a test VR image. The proposed model, dubbed Blind Virtual Reality Image Quality Evaluator (BVRIQE) delivered a consistent performance across all distortion types of the LIVE 3D VR IQA dataset.","PeriodicalId":246982,"journal":{"name":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Signal Processing and Communications (SPCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPCOM55316.2022.9840855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we develop a framework to assess the perceptual quality of Virtual Reality (VR) images by studying the joint dependencies between luminance and disparity pairs using Bivariate Generalized Gaussian Distribution (BGGD) model. We compute model parameters ($\alpha,\ \beta$) of BGGD at multi-scale and multi-orient steerable pyramid decomposition of the cube map projection (CMP) faces of both left and right views of a VR image. We learn Multivariate Gaussian (MVG) model parameters from BGGD features of CMP faces of pristine images as a reference quality representative. We compute Mahalanobis distance between pristine MVG model parameters and distorted image BGGD features to estimate the joint luminance and disparity quality score of a CMP face of a test VR image. We generate an inner map from saliency and phase congruency maps of CMP faces of both left and right views of a VR image. We compute entropy scores of the inner map to pool the joint luminance and disparity quality score of a VR image. Further, we apply IL-NIQE model on CMP faces to derive the overall spatial quality score of a test VR image. Finally, we pool the spatial IL-NIQE score and CMP face level quality score to estimate the overall quality score of a test VR image. The proposed model, dubbed Blind Virtual Reality Image Quality Evaluator (BVRIQE) delivered a consistent performance across all distortion types of the LIVE 3D VR IQA dataset.
BVRIQE:一个完全盲无参考的虚拟现实图像质量评估器
本文采用双变量广义高斯分布(BGGD)模型,通过研究亮度和视差对之间的联合依赖关系,建立了一个评估虚拟现实(VR)图像感知质量的框架。我们在对VR图像的左右视图的立方体地图投影(CMP)面进行多尺度和多方向可定向金字塔分解时计算BGGD的模型参数($\alpha,\ \beta$)。我们从原始图像的CMP人脸的BGGD特征中学习多元高斯(MVG)模型参数作为参考质量代表。我们计算原始MVG模型参数和扭曲图像BGGD特征之间的马氏距离,以估计测试VR图像的CMP人脸的联合亮度和视差质量分数。我们从VR图像的左右视图的CMP面部的显着性和相位一致性映射中生成内部地图。我们计算内部映射的熵值得分,以汇集VR图像的亮度和视差质量联合得分。此外,我们将IL-NIQE模型应用于CMP人脸,以获得测试VR图像的整体空间质量分数。最后,我们将空间IL-NIQE评分和CMP面部水平质量评分汇总,以估计测试VR图像的总体质量评分。所提出的模型,被称为盲虚拟现实图像质量评估器(BVRIQE),在LIVE 3D VR IQA数据集的所有失真类型中提供了一致的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信