On statistical modeling and forecasting of energy usage in smart grid

Wei Yu, Dou An, D. Griffith, Qingyu Yang, Guobin Xu
{"title":"On statistical modeling and forecasting of energy usage in smart grid","authors":"Wei Yu, Dou An, D. Griffith, Qingyu Yang, Guobin Xu","doi":"10.1145/2663761.2663768","DOIUrl":null,"url":null,"abstract":"Developing effective energy resource management strategies in the smart grid is challenging because the entities in both demand and supply sides experience numerous fluctuations. In this paper, we address the issue of quantifying uncertainties on the energy demand side. Specifically, we first develop approaches using statistical modeling analysis to derive a statistical distribution of energy usage. We then utilize machine learning based approaches such as the Support Vector Machines (SVM) and neural networks to conduct accurate forecasting on energy usage. We perform extensive experiments of our proposed approaches using a real-world meter reading data set. Our experimental data shows that the statistical distribution of meter reading data can be largely approximated with a Gaussian distribution and the two SVM-based machine learning approaches achieve a high accuracy of forecasting energy usage.","PeriodicalId":120340,"journal":{"name":"Research in Adaptive and Convergent Systems","volume":"4 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2663761.2663768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Developing effective energy resource management strategies in the smart grid is challenging because the entities in both demand and supply sides experience numerous fluctuations. In this paper, we address the issue of quantifying uncertainties on the energy demand side. Specifically, we first develop approaches using statistical modeling analysis to derive a statistical distribution of energy usage. We then utilize machine learning based approaches such as the Support Vector Machines (SVM) and neural networks to conduct accurate forecasting on energy usage. We perform extensive experiments of our proposed approaches using a real-world meter reading data set. Our experimental data shows that the statistical distribution of meter reading data can be largely approximated with a Gaussian distribution and the two SVM-based machine learning approaches achieve a high accuracy of forecasting energy usage.
智能电网用电量统计建模与预测研究
在智能电网中制定有效的能源资源管理战略具有挑战性,因为供需双方的实体都经历了许多波动。在本文中,我们解决了量化能源需求侧不确定性的问题。具体来说,我们首先开发了使用统计建模分析的方法来推导能源使用的统计分布。然后,我们利用基于机器学习的方法,如支持向量机(SVM)和神经网络,对能源使用进行准确的预测。我们使用现实世界的抄表数据集对我们提出的方法进行了广泛的实验。我们的实验数据表明,抄表数据的统计分布可以在很大程度上近似于高斯分布,两种基于svm的机器学习方法实现了较高的能源使用预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信